Pieter Abbeel - UC Berkeley

Pieter Abbeel
Are you Pieter Abbeel?

Claim your profile, edit publications, add additional information:

Contact Details

Pieter Abbeel
UC Berkeley
United States

Pubs By Year

Pub Categories

Computer Science - Learning (39)
Computer Science - Robotics (28)
Computer Science - Artificial Intelligence (22)
Statistics - Machine Learning (7)
Computer Science - Computer Vision and Pattern Recognition (7)
Computer Science - Neural and Evolutionary Computing (4)
Computer Science - Computers and Society (1)
Computer Science - Computation and Language (1)
Computer Science - Cryptography and Security (1)

Publications Authored By Pieter Abbeel

Imitation learning has been commonly applied to solve different tasks in isolation. This usually requires either careful feature engineering, or a significant number of samples. This is far from what we desire: ideally, robots should be able to learn from very few demonstrations of any given task, and instantly generalize to new situations of the same task, without requiring task-specific engineering. Read More

Bridging the 'reality gap' that separates simulated robotics from experiments on hardware could accelerate robotic research through improved data availability. This paper explores domain randomization, a simple technique for training models on simulated images that transfer to real images by randomizing rendering in the simulator. With enough variability in the simulator, the real world may appear to the model as just another variation. Read More

By capturing statistical patterns in large corpora, machine learning has enabled significant advances in natural language processing, including in machine translation, question answering, and sentiment analysis. However, for agents to intelligently interact with humans, simply capturing the statistical patterns is insufficient. In this paper we investigate if, and how, grounded compositional language can emerge as a means to achieve goals in multi-agent populations. Read More

We introduce a method for learning the dynamics of complex nonlinear systems based on deep generative models over temporal segments of states and actions. Unlike dynamics models that operate over individual discrete timesteps, we learn the distribution over future state trajectories conditioned on past state, past action, and planned future action trajectories, as well as a latent prior over action trajectories. Our approach is based on convolutional autoregressive models and variational autoencoders. Read More

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. Read More

People can learn a wide range of tasks from their own experience, but can also learn from observing other creatures. This can accelerate acquisition of new skills even when the observed agent differs substantially from the learning agent in terms of morphology. In this paper, we examine how reinforcement learning algorithms can transfer knowledge between morphologically different agents (e. Read More

Manipulation of deformable objects, such as ropes and cloth, is an important but challenging problem in robotics. We present a learning-based system where a robot takes as input a sequence of images of a human manipulating a rope from an initial to goal configuration, and outputs a sequence of actions that can reproduce the human demonstration, using only monocular images as input. To perform this task, the robot learns a pixel-level inverse dynamics model of rope manipulation directly from images in a self-supervised manner, using about 60K interactions with the rope collected autonomously by the robot. Read More

Reinforcement learning (RL) makes it possible to train agents capable of achiev- ing sophisticated goals in complex and uncertain environments. A key difficulty in reinforcement learning is specifying a reward function for the agent to optimize. Traditionally, imitation learning in RL has been used to overcome this problem. Read More

We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, called soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradient descent to learn a stochastic sampling network that approximates samples from this distribution. Read More

Our ultimate goal is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. This behavior is often a direct result of the robot's underlying objective function. Our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. Read More

Machine learning classifiers are known to be vulnerable to inputs maliciously constructed by adversaries to force misclassification. Such adversarial examples have been extensively studied in the context of computer vision applications. In this work, we show adversarial attacks are also effective when targeting neural network policies in reinforcement learning. Read More

Reinforcement learning can enable complex, adaptive behavior to be learned automatically for autonomous robotic platforms. However, practical deployment of reinforcement learning methods must contend with the fact that the training process itself can be unsafe for the robot. In this paper, we consider the specific case of a mobile robot learning to navigate an a priori unknown environment while avoiding collisions. Read More

The high variance issue in unbiased policy-gradient methods such as VPG and REINFORCE is typically mitigated by adding a baseline. However, the baseline fitting itself suffers from the underfitting or the overfitting problem. In this paper, we develop a K-fold method for baseline estimation in policy gradient algorithms. Read More

Deep reinforcement learning (RL) can acquire complex behaviors from low-level inputs, such as images. However, real-world applications of such methods require generalizing to the vast variability of the real world. Deep networks are known to achieve remarkable generalization when provided with massive amounts of labeled data, but can we provide this breadth of experience to an RL agent, such as a robot? The robot might continuously learn as it explores the world around it, even while deployed. Read More

It is clear that one of the primary tools we can use to mitigate the potential risk from a misbehaving AI system is the ability to turn the system off. As the capabilities of AI systems improve, it is important to ensure that such systems do not adopt subgoals that prevent a human from switching them off. This is a challenge because many formulations of rational agents create strong incentives for self-preservation. Read More

Count-based exploration algorithms are known to perform near-optimally when used in conjunction with tabular reinforcement learning (RL) methods for solving small discrete Markov decision processes (MDPs). It is generally thought that count-based methods cannot be applied in high-dimensional state spaces, since most states will only occur once. Recent deep RL exploration strategies are able to deal with high-dimensional continuous state spaces through complex heuristics, often relying on optimism in the face of uncertainty or intrinsic motivation. Read More

Generative adversarial networks (GANs) are a recently proposed class of generative models in which a generator is trained to optimize a cost function that is being simultaneously learned by a discriminator. While the idea of learning cost functions is relatively new to the field of generative modeling, learning costs has long been studied in control and reinforcement learning (RL) domains, typically for imitation learning from demonstrations. In these fields, learning cost function underlying observed behavior is known as inverse reinforcement learning (IRL) or inverse optimal control. Read More

Representation learning seeks to expose certain aspects of observed data in a learned representation that's amenable to downstream tasks like classification. For instance, a good representation for 2D images might be one that describes only global structure and discards information about detailed texture. In this paper, we present a simple but principled method to learn such global representations by combining Variational Autoencoder (VAE) with neural autoregressive models such as RNN, MADE and PixelRNN/CNN. Read More

Deep reinforcement learning (deep RL) has been successful in learning sophisticated behaviors automatically; however, the learning process requires a huge number of trials. In contrast, animals can learn new tasks in just a few trials, benefiting from their prior knowledge about the world. This paper seeks to bridge this gap. Read More

Developing control policies in simulation is often more practical and safer than directly running experiments in the real world. This applies to policies obtained from planning and optimization, and even more so to policies obtained from reinforcement learning, which is often very data demanding. However, a policy that succeeds in simulation often doesn't work when deployed on a real robot. Read More

Autonomous learning of robotic skills can allow general-purpose robots to learn wide behavioral repertoires without requiring extensive manual engineering. However, robotic skill learning methods typically make one of several trade-offs to enable practical real-world learning, such as requiring manually designed policy or value function representations, initialization from human-provided demonstrations, instrumentation of the training environment, or extremely long training times. In this paper, we propose a new reinforcement learning algorithm for learning manipulation skills that can train general-purpose neural network policies with minimal human engineering, while still allowing for fast, efficient learning in stochastic environments. Read More

Model predictive control (MPC) is a popular control method that has proved effective for robotics, among other fields. MPC performs re-planning at every time step. Re-planning is done with a limited horizon per computational and real-time constraints and often also for robustness to potential model errors. Read More

Tensegrity robots, composed of rigid rods connected by elastic cables, have a number of unique properties that make them appealing for use as planetary exploration rovers. However, control of tensegrity robots remains a difficult problem due to their unusual structures and complex dynamics. In this work, we show how locomotion gaits can be learned automatically using a novel extension of mirror descent guided policy search (MDGPS) applied to periodic locomotion movements, and we demonstrate the effectiveness of our approach on tensegrity robot locomotion. Read More

Reinforcement learning (RL) can automate a wide variety of robotic skills, but learning each new skill requires considerable real-world data collection and manual representation engineering to design policy classes or features. Using deep reinforcement learning to train general purpose neural network policies alleviates some of the burden of manual representation engineering by using expressive policy classes, but exacerbates the challenge of data collection, since such methods tend to be less efficient than RL with low-dimensional, hand-designed representations. Transfer learning can mitigate this problem by enabling us to transfer information from one skill to another and even from one robot to another. Read More

An Autonomous Physical System (APS) will be expected to reliably and independently evaluate, execute, and achieve goals while respecting surrounding rules, laws, or conventions. In doing so, an APS must rely on a broad spectrum of dynamic, complex, and often imprecise information about its surroundings, the task it is to perform, and its own sensors and actuators. For example, cleaning in a home or commercial setting requires the ability to perceive, grasp, and manipulate many physical objects, the ability to reliably perform a variety of subtasks such as washing, folding, and stacking, and knowledge about local conventions such as how objects are classified and where they should be stored. Read More

We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. Read More

This paper describes InfoGAN, an information-theoretic extension to the Generative Adversarial Network that is able to learn disentangled representations in a completely unsupervised manner. InfoGAN is a generative adversarial network that also maximizes the mutual information between a small subset of the latent variables and the observation. We derive a lower bound to the mutual information objective that can be optimized efficiently, and show that our training procedure can be interpreted as a variation of the Wake-Sleep algorithm. Read More

For an autonomous system to be helpful to humans and to pose no unwarranted risks, it needs to align its values with those of the humans in its environment in such a way that its actions contribute to the maximization of value for the humans. We propose a formal definition of the value alignment problem as cooperative inverse reinforcement learning (CIRL). A CIRL problem is a cooperative, partial-information game with two agents, human and robot; both are rewarded according to the human's reward function, but the robot does not initially know what this is. Read More

Scalable and effective exploration remains a key challenge in reinforcement learning (RL). While there are methods with optimality guarantees in the setting of discrete state and action spaces, these methods cannot be applied in high-dimensional deep RL scenarios. As such, most contemporary RL relies on simple heuristics such as epsilon-greedy exploration or adding Gaussian noise to the controls. Read More

Generative state estimators based on probabilistic filters and smoothers are one of the most popular classes of state estimators for robots and autonomous vehicles. However, generative models have limited capacity to handle rich sensory observations, such as camera images, since they must model the entire distribution over sensor readings. Discriminative models do not suffer from this limitation, but are typically more complex to train as latent variable models for state estimation. Read More

Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. Read More

Dexterous multi-fingered hands can accomplish fine manipulation behaviors that are infeasible with simple robotic grippers. However, sophisticated multi-fingered hands are often expensive and fragile. Low-cost soft hands offer an appealing alternative to more conventional devices, but present considerable challenges in sensing and actuation, making them difficult to apply to more complex manipulation tasks. Read More

Policy search can in principle acquire complex strategies for control of robots and other autonomous systems. When the policy is trained to process raw sensory inputs, such as images and depth maps, it can also acquire a strategy that combines perception and control. However, effectively processing such complex inputs requires an expressive policy class, such as a large neural network. Read More

Reinforcement learning can acquire complex behaviors from high-level specifications. However, defining a cost function that can be optimized effectively and encodes the correct task is challenging in practice. We explore how inverse optimal control (IOC) can be used to learn behaviors from demonstrations, with applications to torque control of high-dimensional robotic systems. Read More

We introduce the value iteration network (VIN): a fully differentiable neural network with a `planning module' embedded within. VINs can learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning, such as policies for reinforcement learning. Key to our approach is a novel differentiable approximation of the value-iteration algorithm, which can be represented as a convolutional neural network, and trained end-to-end using standard backpropagation. Read More

Real-world robotics problems often occur in domains that differ significantly from the robot's prior training environment. For many robotic control tasks, real world experience is expensive to obtain, but data is easy to collect in either an instrumented environment or in simulation. We propose a novel domain adaptation approach for robot perception that adapts visual representations learned on a large easy-to-obtain source dataset (e. Read More

Model predictive control (MPC) is an effective method for controlling robotic systems, particularly autonomous aerial vehicles such as quadcopters. However, application of MPC can be computationally demanding, and typically requires estimating the state of the system, which can be challenging in complex, unstructured environments. Reinforcement learning can in principle forego the need for explicit state estimation and acquire a policy that directly maps sensor readings to actions, but is difficult to apply to unstable systems that are liable to fail catastrophically during training before an effective policy has been found. Read More

One of the key challenges in applying reinforcement learning to complex robotic control tasks is the need to gather large amounts of experience in order to find an effective policy for the task at hand. Model-based reinforcement learning can achieve good sample efficiency, but requires the ability to learn a model of the dynamics that is good enough to learn an effective policy. In this work, we develop a model-based reinforcement learning algorithm that combines prior knowledge from previous tasks with online adaptation of the dynamics model. Read More

In this paper, we present a robotic model-based reinforcement learning method that combines ideas from model identification and model predictive control. We use a feature-based representation of the dynamics that allows the dynamics model to be fitted with a simple least squares procedure, and the features are identified from a high-level specification of the robot's morphology, consisting of the number and connectivity structure of its links. Model predictive control is then used to choose the actions under an optimistic model of the dynamics, which produces an efficient and goal-directed exploration strategy. Read More

Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera images. Read More

Policy learning for partially observed control tasks requires policies that can remember salient information from past observations. In this paper, we present a method for learning policies with internal memory for high-dimensional, continuous systems, such as robotic manipulators. Our approach consists of augmenting the state and action space of the system with continuous-valued memory states that the policy can read from and write to. Read More

Achieving efficient and scalable exploration in complex domains poses a major challenge in reinforcement learning. While Bayesian and PAC-MDP approaches to the exploration problem offer strong formal guarantees, they are often impractical in higher dimensions due to their reliance on enumerating the state-action space. Hence, exploration in complex domains is often performed with simple epsilon-greedy methods. Read More

In a variety of problems originating in supervised, unsupervised, and reinforcement learning, the loss function is defined by an expectation over a collection of random variables, which might be part of a probabilistic model or the external world. Estimating the gradient of this loss function, using samples, lies at the core of gradient-based learning algorithms for these problems. We introduce the formalism of stochastic computation graphs---directed acyclic graphs that include both deterministic functions and conditional probability distributions---and describe how to easily and automatically derive an unbiased estimator of the loss function's gradient. Read More

We introduce a new machine learning approach for image segmentation that uses a neural network to model the conditional energy of a segmentation given an image. Our approach, combinatorial energy learning for image segmentation (CELIS) places a particular emphasis on modeling the inherent combinatorial nature of dense image segmentation problems. We propose efficient algorithms for learning deep neural networks to model the energy function, and for local optimization of this energy in the space of supervoxel agglomerations. Read More

Policy gradient methods are an appealing approach in reinforcement learning because they directly optimize the cumulative reward and can straightforwardly be used with nonlinear function approximators such as neural networks. The two main challenges are the large number of samples typically required, and the difficulty of obtaining stable and steady improvement despite the nonstationarity of the incoming data. We address the first challenge by using value functions to substantially reduce the variance of policy gradient estimates at the cost of some bias, with an exponentially-weighted estimator of the advantage function that is analogous to TD(lambda). Read More

Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-to-end provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a partially observed guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. Read More

We describe a iterative procedure for optimizing policies, with guaranteed monotonic improvement. By making several approximations to the theoretically-justified procedure, we develop a practical algorithm, called Trust Region Policy Optimization (TRPO). This algorithm is similar to natural policy gradient methods and is effective for optimizing large nonlinear policies such as neural networks. Read More

In this paper we present the Yale-CMU-Berkeley (YCB) Object and Model set, intended to be used to facilitate benchmarking in robotic manipulation, prosthetic design and rehabilitation research. The objects in the set are designed to cover a wide range of aspects of the manipulation problem; it includes objects of daily life with different shapes, sizes, textures, weight and rigidity, as well as some widely used manipulation tests. The associated database provides high-resolution RGBD scans, physical properties, and geometric models of the objects for easy incorporation into manipulation and planning software platforms. Read More

Autonomous learning of object manipulation skills can enable robots to acquire rich behavioral repertoires that scale to the variety of objects found in the real world. However, current motion skill learning methods typically restrict the behavior to a compact, low-dimensional representation, limiting its expressiveness and generality. In this paper, we extend a recently developed policy search method \cite{la-lnnpg-14} and use it to learn a range of dynamic manipulation behaviors with highly general policy representations, without using known models or example demonstrations. Read More

Most optimal routing problems focus on minimizing travel time or distance traveled. Oftentimes, a more useful objective is to maximize the probability of on-time arrival, which requires statistical distributions of travel times, rather than just mean values. We propose a method to estimate travel time distributions on large-scale road networks, using probe vehicle data collected from GPS. Read More