Pierre Chainais

Pierre Chainais
Are you Pierre Chainais?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Pierre Chainais
Affiliation
Location

Pubs By Year

Pub Categories

 
Statistics - Methodology (4)
 
Statistics - Machine Learning (2)
 
Statistics - Applications (1)
 
Astrophysics (1)
 
Physics - Fluid Dynamics (1)
 
Physics - Data Analysis; Statistics and Probability (1)
 
Computer Science - Learning (1)

Publications Authored By Pierre Chainais

A novel approach towards the spectral analysis of stationary random bivariate signals is proposed. Using the Quaternion Fourier Transform, we introduce a quaternion-valued spectral representation of random bivariate signals seen as complex-valued sequences. This makes possible the definition of a scalar quaternion-valued spectral density for bivariate signals. Read More

Many phenomena are described by bivariate signals or bidimensional vectors in applications ranging from radar to EEG, optics and oceanography. The time-frequency analysis of bivariate signals is usually carried out by analyzing two separate quantities, e.g. Read More

Sparse representations have proven their efficiency in solving a wide class of inverse problems encountered in signal and image processing. Conversely, enforcing the information to be spread uniformly over representation coefficients exhibits relevant properties in various applications such as digital communications. Anti-sparse regularization can be naturally expressed through an $\ell_{\infty}$-norm penalty. Read More

The study of turbulent flows calls for measurements with high resolution both in space and in time. We propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity fields by combining two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian reconstruction approach using a simulated database. Read More

It is well known that the registration process is a key step for super-resolution reconstruction. In this work, we propose to use a piezoelectric system that is easily adaptable on all microscopes and telescopes for controlling accurately their motion (down to nanometers) and therefore acquiring multiple images of the same scene at different controlled positions. Then a fast super-resolution algorithm \cite{eh01} can be used for efficient super-resolution reconstruction. Read More

We consider the problem of distributed dictionary learning, where a set of nodes is required to collectively learn a common dictionary from noisy measurements. This approach may be useful in several contexts including sensor networks. Diffusion cooperation schemes have been proposed to solve the distributed linear regression problem. Read More

Future missions such as Solar Orbiter (SO), InterHelioprobe, or Solar Probe aim at approaching the Sun closer than ever before, with on board some high resolution imagers (HRI) having a subsecond cadence and a pixel area of about $(80km)^2$ at the Sun during perihelion. In order to guarantee their scientific success, it is necessary to evaluate if the photon counts available at these resolution and cadence will provide a sufficient signal-to-noise ratio (SNR). We perform a first step in this direction by analyzing and characterizing the spatial intermittency of Quiet Sun images thanks to a multifractal analysis. Read More