Phillip Isola

Phillip Isola
Are you Phillip Isola?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Phillip Isola
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (9)
 
Computer Science - Learning (3)
 
Computer Science - Sound (1)
 
Computer Science - Robotics (1)
 
Computer Science - Graphics (1)

Publications Authored By Phillip Isola

We propose a deep learning approach for user-guided image colorization. The system directly maps a grayscale image, along with sparse, local user "hints" to an output colorization with a Convolutional Neural Network (CNN). Rather than using hand-defined rules, the network propagates user edits by fusing low-level cues along with high-level semantic information, learned from large-scale data. Read More

Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain $X$ to a target domain $Y$ in the absence of paired examples. Read More

Manipulation of deformable objects, such as ropes and cloth, is an important but challenging problem in robotics. We present a learning-based system where a robot takes as input a sequence of images of a human manipulating a rope from an initial to goal configuration, and outputs a sequence of actions that can reproduce the human demonstration, using only monocular images as input. To perform this task, the robot learns a pixel-level inverse dynamics model of rope manipulation directly from images in a self-supervised manner, using about 60K interactions with the rope collected autonomously by the robot. Read More

We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task -- predicting one subset of the data channels from another. Read More

We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. Read More

Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. Read More

Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. Read More

We propose a self-supervised framework that learns to group visual entities based on their rate of co-occurrence in space and time. To model statistical dependencies between the entities, we set up a simple binary classification problem in which the goal is to predict if two visual primitives occur in the same spatial or temporal context. We apply this framework to three domains: learning patch affinities from spatial adjacency in images, learning frame affinities from temporal adjacency in videos, and learning photo affinities from geospatial proximity in image collections. Read More

In this paper, we study the problem of reproducing the world lighting from a single image of an object covered with random specular microfacets on the surface. We show that such reflectors can be interpreted as a randomized mapping from the lighting to the image. Such specular objects have very different optical properties from both diffuse surfaces and smooth specular objects like metals, so we design special imaging system to robustly and effectively photograph them. Read More