Philippe Andre - Service d' Astrophysique, C.E. Saclay

Philippe Andre
Are you Philippe Andre?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Philippe Andre
Affiliation
Service d' Astrophysique, C.E. Saclay
City
Saclay
Country
France

Pubs By Year

Pub Categories

 
Astrophysics of Galaxies (17)
 
Astrophysics (12)
 
Solar and Stellar Astrophysics (5)
 
Cosmology and Nongalactic Astrophysics (3)
 
Earth and Planetary Astrophysics (2)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By Philippe Andre

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

We present a comparison of SCUBA-2 850-$\mu$m and Herschel 70--500-$\mu$m observations of the L1495 filament in the Taurus Molecular Cloud with the goal of characterising the SCUBA-2 Gould Belt Survey (GBS) data set. We identify and characterise starless cores in three data sets: SCUBA-2 850-$\mu$m, Herschel 250-$\mu$m, and Herschel 250-$\mu$m spatially filtered to mimic the SCUBA-2 data. SCUBA-2 detects only the highest-surface-brightness sources, principally detecting protostellar sources and starless cores embedded in filaments, while Herschel is sensitive to most of the cloud structure, including extended low-surface-brightness emission. Read More

We present the results of ALMA observations of dust continuum emission and molecular rotational lines toward a dense core MC27 (aka L1521F) in Taurus, which is considered to be at a very early stage of star formation. The detailed column density distribution on size scales from a few tens AU to ~10,000 AU scale are revealed by combining the ALMA (12 m array + 7 m array) data with the published/unpublished single-dish data. The high angular resolution observations at 0. Read More

The filamentary structure of the molecular interstellar medium and the potential link of this morphology to star formation have been brought into focus recently by high resolution observational surveys. An especially puzzling matter is that local interstellar filaments appear to have the same thickness, independent of their column density. This requires a theoretical understanding of their formation process and the physics that governs their evolution. Read More

Context. Observations of nearby star-forming regions with the Herschel Space Observatory complement our view of the protoplanetary disks in Ophiuchus with information about the outer disks. Aims. Read More

We present 13CO and C18O (1-0), (2-1), and (3-2) maps towards the core-forming Perseus B1-E clump using observations from the James Clerk Maxwell Telescope (JCMT), Submillimeter Telescope (SMT) of the Arizona Radio Observatory, and IRAM 30 m telescope. We find that the 13CO and C18O line emission both have very complex velocity structures, indicative of multiple velocity components within the ambient gas. The (1-0) transitions reveal a radial velocity gradient across B1-E of 1 km/s/pc that increases from north-west to south-east, whereas the majority of the Perseus cloud has a radial velocity gradient increasing from south-west to north-east. Read More

We show Akari data, Herschel data and data from the SCUBA2 camera on JCMT, of molecular clouds. We focus on pre-stellar cores within the clouds. We present Akari data of the L1147-1157 ring in Cepheus and show how the data indicate that the cores are being externally heated. Read More

ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 microns). A preliminary version of the instrument equipped with the 350 microns focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 austral winters. This instrument is developed by CEA (Saclay and Grenoble, France), IAS (France) and University of Manchester (UK) in collaboration with ESO. Read More

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial and boundary conditions of the star formation process. The Herschel results emphasize the role of interstellar filaments in the star formation process and connect remarkably well with nearly a decade's worth of numerical simulations and theory that have consistently shown that the ISM should be highly filamentary on all scales and star formation is intimately related to self-gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is governed by relatively simple universal processes - from filamentary clumps to galactic scales. Read More

Recent Herschel observations have confirmed that filaments are ubiquitous in molecular clouds and suggest that irrespectively of the column density, there is a characteristic width of about 0.1 pc whose physical origin remains unclear. We develop an analytical model that can be applied to self-gravitating accreting filaments. Read More

2013Oct
Authors: PRISM Collaboration, Philippe André, Carlo Baccigalupi, Anthony Banday, Domingos Barbosa, Belen Barreiro, James Bartlett, Nicola Bartolo, Elia Battistelli, Richard Battye, George Bendo, Alain Benoît, Jean-Philippe Bernard, Marco Bersanelli, Matthieu Béthermin, Pawel Bielewicz, Anna Bonaldi, François Bouchet, François Boulanger, Jan Brand, Martin Bucher, Carlo Burigana, Zhen-Yi Cai, Philippe Camus, Francisco Casas, Viviana Casasola, Guillaume Castex, Anthony Challinor, Jens Chluba, Gayoung Chon, Sergio Colafrancesco, Barbara Comis, Francesco Cuttaia, Giuseppe D'Alessandro, Antonio Da Silva, Richard Davis, Miguel de Avillez, Paolo de Bernardis, Marco de Petris, Adriano de Rosa, Gianfranco de Zotti, Jacques Delabrouille, François-Xavier Désert, Clive Dickinson, Jose Maria Diego, Joanna Dunkley, Torsten Enßlin, Josquin Errard, Edith Falgarone, Pedro Ferreira, Katia Ferrière, Fabio Finelli, Andrew Fletcher, Pablo Fosalba, Gary Fuller, Silvia Galli, Ken Ganga, Juan García-Bellido, Adnan Ghribi, Martin Giard, Yannick Giraud-Héraud, Joaquin Gonzalez-Nuevo, Keith Grainge, Alessandro Gruppuso, Alex Hall, Jean-Christophe Hamilton, Marijke Haverkorn, Carlos Hernandez-Monte\-agudo, Diego Herranz, Mark Jackson, Andrew Jaffe, Rishi Khatri, Martin Kunz, Luca Lamagna, Massimiliano Lattanzi, Paddy Leahy, Julien Lesgourgues, Michele Liguori, Elisabetta Liuzzo, Marcos Lopez-Caniego, Juan Macias-Perez, Bruno Maffei, Davide Maino, Anna Mangilli, Enrique Martinez-Gonzalez, Carlos Martins, Silvia Masi, Marcella Massardi, Sabino Matarrese, Alessandro Melchiorri, Jean-Baptiste Melin, Aniello Mennella, Arturo Mignano, Marc-Antoine Miville-Deschênes, Alessandro Monfardini, Anthony Murphy, Pavel Naselsky, Federico Nati, Paolo Natoli, Mattia Negrello, Fabio Noviello, Créidhe O'Sullivan, Francesco Paci, Luca Pagano, Rosita Paladino, Nathalie Palanque-Delabrouille, Daniela Paoletti, Hiranya Peiris, Francesca Perrotta, Francesco Piacentini, Michel Piat, Lucio Piccirillo, Giampaolo Pisano, Gianluca Polenta, Agnieszka Pollo, Nicolas Ponthieu, Mathieu Remazeilles, Sara Ricciardi, Matthieu Roman, Cyrille Rosset, Jose-Alberto Rubino-Martin, Maria Salatino, Alessandro Schillaci, Paul Shellard, Joseph Silk, Alexei Starobinsky, Radek Stompor, Rashid Sunyaev, Andrea Tartari, Luca Terenzi, Luigi Toffolatti, Maurizio Tomasi, Neil Trappe, Matthieu Tristram, Tiziana Trombetti, Marco Tucci, Rien Van de Weijgaert, Bartjan Van Tent, Licia Verde, Patricio Vielva, Ben Wandelt, Robert Watson, Stafford Withington

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. Read More

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial conditions and early phases of the star formation process. The Herschel images reveal an intricate network of filamentary structure in every interstellar cloud. These filaments all exhibit remarkably similar widths - about a tenth of a parsec - but only the densest ones contain prestellar cores, the seeds of future stars. Read More

(abridged) We correlated near-infrared stellar H-Ks colour excesses of background stars from NTT/SOFI with the far-IR optical depth map, tauFIR, derived from Herschel 160, 250, 350, and 500 um data. The Herschel maps were also used to construct a model for the cloud to examine the effect of temperature gradients on the estimated optical depths and dust absorption cross-sections. A linear correlation is seen between the colour H-Ks and tauFIR up to high extinctions (AV ~ 25). Read More

2013Jun
Authors: PRISM Collaboration, Philippe Andre, Carlo Baccigalupi, Domingos Barbosa, James Bartlett, Nicola Bartolo, Elia Battistelli, Richard Battye, George Bendo, Jean-Philippe Bernard, Marco Bersanelli, Matthieu Bethermin, Pawel Bielewicz, Anna Bonaldi, Francois Bouchet, Francois Boulanger, Jan Brand, Martin Bucher, Carlo Burigana, Zhen-Yi Cai, Viviana Casasola, Guillaume Castex, Anthony Challinor, Jens Chluba, Sergio Colafrancesco, Francesco Cuttaia, Giuseppe D'Alessandro, Richard Davis, Miguel de Avillez, Paolo de Bernardis, Marco de Petris, Adriano de Rosa, Gianfranco de Zotti, Jacques Delabrouille, Clive Dickinson, Jose Maria Diego, Edith Falgarone, Pedro Ferreira, Katia Ferriere, Fabio Finelli, Andrew Fletcher, Gary Fuller, Silvia Galli, Ken Ganga, Juan Garcia-Bellido, Adnan Ghribi, Joaquin Gonzalez-Nuevo, Keith Grainge, Alessandro Gruppuso, Alex Hall, Carlos Hernandez-Monteagudo, Mark Jackson, Andrew Jaffe, Rishi Khatri, Luca Lamagna, Massimiliano Lattanzi, Paddy Leahy, Michele Liguori, Elisabetta Liuzzo, Marcos Lopez-Caniego, Juan Macias-Perez, Bruno Maffei, Davide Maino, Silvia Masi, Anna Mangilli, Marcella Massardi, Sabino Matarrese, Alessandro Melchiorri, Jean-Baptiste Melin, Aniello Mennella, Arturo Mignano, Marc-Antoine Miville-Deschenes, Federico Nati, Paolo Natoli, Mattia Negrello, Fabio Noviello, Francesco Paci, Rosita Paladino, Daniela Paoletti, Francesca Perrotta, Francesco Piacentini, Michel Piat, Lucio Piccirillo, Giampaolo Pisano, Gianluca Polenta, Sara Ricciardi, Matthieu Roman, Jose-Alberto Rubino-Martin, Maria Salatino, Alessandro Schillaci, Paul Shellard, Joseph Silk, Radek Stompor, Rashid Sunyaev, Andrea Tartari, Luca Terenzi, Luigi Toffolatti, Maurizio Tomasi, Tiziana Trombetti, Marco Tucci, Bartjan Van Tent, Licia Verde, Ben Wandelt, Stafford Withington

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Read More

We investigate the gas velocity dispersions of a sample of filaments recently detected as part of the Herschel Gould Belt Survey in the IC5146, Aquila, and Polaris interstellar clouds. To measure these velocity dispersions, we use 13CO, C18O, and N2H+ line observations obtained with the IRAM 30m telescope. Correlating our velocity dispersion measurements with the filament column densities derived from Herschel data, we show that interstellar filaments can be divided into two regimes: thermally subcritical filaments, which have transonic velocity dispersions (c_s ~< \sigma_tot < 2 c_s) independent of column density, and are gravitationally unbound; and thermally supercritical filaments, which have higher velocity dispersions scaling roughly as the square root of column density (\sigma_tot ~ \Sigma^0. Read More

We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory (CSO) with the eventual goal of quantifying the star formation and cloud structure in this Giant Molecular Cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160um sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. Read More

The CrA region and the Coronet cluster form a nearby (138 pc), young (1-2 Myr) star-forming region hosting a moderate population of YSO. We present Herschel PACS photometry at 100 and 160 micron, obtained as part of the Herschel Gould Belt Survey. The Herschel maps reveal the cluster members with high sensitivity and high dynamic range. Read More

We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 um from the Herschel Gould Belt Survey and comparing this to a column density obtained from the 2MASS-derived color excess E(J-Ks). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with NH ranging from 1. Read More

It is not known whether brown dwarfs (stellar-like objects with masses less than the hydrogen-burning limit, 0.075 Msun) are formed in the same way as solar-type stars or by some other process. Here we report the clear-cut identification of a self-gravitating condensation of gas and dust with a mass in the brown-dwarf regime, made through millimeter interferometric observations. Read More

We present the first Herschel PACS and SPIRE results of the Vela C molecular complex in the far-infrared and submillimetre regimes at 70, 160, 250, 350, and 500 um, spanning the peak of emission of cold prestellar or protostellar cores. Column density and multi-resolution analysis (MRA) differentiates the Vela C complex into five distinct sub-regions. Each sub-region displays differences in their column density and temperature probability distribution functions (PDFs), in particular, the PDFs of the `Centre-Ridge' and `South-Nest' sub-regions appear in stark contrast to each other. Read More

Abridged -- We present an analysis of the Aquila Rift complex which addresses the questions of the star formation rate (SFR), star formation efficiency (SFE) and typical lifetime of the Class 0 protostellar phase in two nearby cluster-forming clumps: the Serpens South and W40 protoclusters. We carried out a 1.2 mm dust continuum mapping of the Aquila Rift complex with the MAMBO bolometer array on the IRAM 30m telescope. Read More

2010Dec
Affiliations: 1Cardiff University, 2ESO Germany, 3Cardiff University, 4Service d' Astrophysique, C.E. Saclay

A large fraction of brown dwarfs and low-mass H-burning stars may form by gravitational fragmentation of protostellar discs. We explore the conditions for disc fragmentation and we find that they are satisfied when a disc is large enough (>100 AU) so that its outer regions can cool efficiently, and it has enough mass to be gravitationally unstable, at such radii. We perform radiative hydrodynamic simulations and show that even a disc with mass 0. Read More

Improving our understanding of the initial conditions and earliest stages of star formation is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. We review the properties of low-mass dense cores as derived from recent millimeter/submillimeter observations of nearby molecular clouds and discuss them in the context of various contemporary scenarios for cloud core formation and evolution. None of the extreme scenarios can explain all observations. Read More

2008Jan
Affiliations: 1CEA Saclay, 2NORDITA, 3KASI, 4KASI, 5Lebanese U
Category: Astrophysics

We analyze the mass distribution of cores formed in an isothermal, magnetized, turbulent, and self-gravitating nearly critical molecular cloud model. Cores are identified at two density threshold levels. Our main results are that the presence of self-gravity modifies the slopes of the core mass function (CMF) at the high mass end. Read More

A new kind of bolometric architecture has been successfully developed for the PACS photometer onboard the Herschel submillimeter observatory. These new generation CCD-like arrays are buttable and enable the conception of large fully sampled focal planes. We present a feasibility study of the adaptation of these bolometer arrays to ground-based submillimeter telescopes. Read More

2004Aug
Affiliations: 1National Research Council of Canada, HIA, 2Service d'Astrophysique, CEA/DSM/DAPNIA, 3Harvard-Smithsonian Center for Astrophysics
Category: Astrophysics

We present combined BIMA interferometer and IRAM 30 m Telescope data of N2H+ 1-0 line emission across the nearby dense, star forming core Ophiuchus A (Oph A) at high linear resolution (e.g., ~1000 AU). Read More

We present a high-resolution millimeter study of the very young Class 0 protostar IRAM 04191+1522 in the Taurus molecular cloud. N2H+(1-0) observations with the IRAM Plateau de Bure Interferometer and 30m telescope demonstrate that the molecular ion N2H+ disappears from the gas phase in the inner part of the protostellar envelope (r < 1600 AU, n(H2) > 5 x 10^5 cm^-3). This result departs from the predictions of current chemical models. Read More

Improving our understanding of the earliest stages of star formation is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. We discuss recent advances made in this area thanks to detailed mapping observations at infrared and (sub)millimeter wavelengths. Although ambipolar diffusion appears to be too slow to play a direct role in the formation of dense cores, there is nevertheless good evidence that the gravitational collapse of isolated protostellar cores is strongly magnetically controlled. Read More

Improving our understanding of the initial conditions and earliest stages of protostellar collapse is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. Observationally, there are two complementary approaches to this problem: (1) studying the structure and kinematics of prestellar cores observed prior to protostar formation, and (2) studying the structure of young (e.g. Read More

Recent (sub)millimeter continuum surveys of nearby star-forming regions have revealed a wealth of new, cold cloud fragments. Those which are small-scale (diameter < 10000 AU), starless, and gravitationally bound are good candidates for being the direct progenitors of protostars, i.e. Read More

2001Jan
Affiliations: 1Astrophysical Institute and University Observatory Jena, 2Service d'Astrophysique, CEA-Saclay, 3Department of Physics and Astronomy, Cardiff University
Category: Astrophysics

Observations of dark cloud cores have been carried out in the mid-infrared using ISOCAM and in the far-infrared using ISOPHOT, both aboard the Infrared Space Observatory. The cores are in most cases detected in emission at 200 and 170 micron, remain undetected at 90 micron and are seen in absorption against the diffuse mid-infrared background at 7 micron. The observations are consistent with the cores being pre-stellar and not having a central heating source, and yield core temperatures of ~ 11-13 K. Read More

2000Jun
Affiliations: 1CEA-Saclay, 2CEA-Saclay, 3IAS Orsay, 4IAS Orsay, 5Observatoire de Bordeaux, 6Cardiff University
Category: Astrophysics

We present the results of a mid-infrared (7 micron) imaging survey of a sample of 24 starless dense cores carried out at an angular resolution of 6 arcsec with the ISOCAM camera aboard the Infrared Space Observatory (ISO). The targeted cores are believed to be pre-stellar in nature and to represent the initial conditions of low-mass, isolated star formation. In previous submillimeter dust continuum studies of such pre-stellar cores, it was found that the derived column density profiles did not follow a single power-law such as N[H2] \propto r^(-1) throughout their full extent but flattened out near their center. Read More

2000May
Affiliations: 1Service d'Astrophysique, CEA/DSM/DAPNIA, CEA-Saclay, Gif-sur-Yvette, France, 2Service d'Astrophysique, CEA/DSM/DAPNIA, CEA-Saclay, Gif-sur-Yvette, France, 3Observatoire de Bordeaux, Floirac, France, 4Service d'Astrophysique, CEA/DSM/DAPNIA, CEA-Saclay, Gif-sur-Yvette, France, 5Departement of Astronomy and Astrophysics, Pennsylvania State University, University Park, USA
Category: Astrophysics

We have obtained two deep exposures of the rho Oph cloud core region with the ROSAT HRI. The improved position accuracy (1"-6") with respect to previous recent X-ray observations (ROSAT PSPC, and ASCA) allows us to remove positional ambiguities for the detected sources. We also cross-correlate the X-ray positions with IR sources found in the ISO-ISOCAM survey of the same region at 6. Read More

1999Mar
Affiliations: 1Service d'Astrophysique, CEA Saclay, 2University of Wales, Cardiff, 3University of California at Riverside
Category: Astrophysics

The last decade has witnessed significant advances in our observational understanding of the earliest stages of low-mass star formation. The advent of sensitive receivers on large radio telescopes such as the JCMT and IRAM 30m MRT has led to the identification of young protostars at the beginning of the main accretion phase (`Class 0' objects), and has made it possible to probe, for the first time, the inner density structure of pre-collapse cores. Class 0 objects are characterized by strong, centrally-condensed dust continuum emission at submillimeter wavelengths, very little emission shortward of 10 microns, and powerful jet-like outflows. Read More