Philipp Krahenbuhl

Philipp Krahenbuhl
Are you Philipp Krahenbuhl?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Philipp Krahenbuhl
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (10)
 
Computer Science - Learning (6)
 
Computer Science - Artificial Intelligence (3)
 
Computer Science - Graphics (1)
 
Statistics - Machine Learning (1)
 
Computer Science - Neural and Evolutionary Computing (1)

Publications Authored By Philipp Krahenbuhl

Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to "fall off" the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold directly from data using a generative adversarial neural network. Read More

The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing that the latent space of such generators captures semantic variation in the data distribution. Intuitively, models trained to predict these semantic latent representations given data may serve as useful feature representations for auxiliary problems where semantics are relevant. However, in their existing form, GANs have no means of learning the inverse mapping -- projecting data back into the latent space. Read More

We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders -- a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s). Read More

Discriminative deep learning approaches have shown impressive results for problems where human-labeled ground truth is plentiful, but what about tasks where labels are difficult or impossible to obtain? This paper tackles one such problem: establishing dense visual correspondence across different object instances. For this task, although we do not know what the ground-truth is, we know it should be consistent across instances of that category. We exploit this consistency as a supervisory signal to train a convolutional neural network to predict cross-instance correspondences between pairs of images depicting objects of the same category. Read More

Convolutional Neural Networks (CNNs) have recently emerged as the dominant model in computer vision. If provided with enough training data, they predict almost any visual quantity. In a discrete setting, such as classification, CNNs are not only able to predict a label but often predict a confidence in the form of a probability distribution over the output space. Read More

Convolutional Neural Networks spread through computer vision like a wildfire, impacting almost all visual tasks imaginable. Despite this, few researchers dare to train their models from scratch. Most work builds on one of a handful of ImageNet pre-trained models, and fine-tunes or adapts these for specific tasks. Read More

We propose a data-driven approach for intrinsic image decomposition, which is the process of inferring the confounding factors of reflectance and shading in an image. We pose this as a two-stage learning problem. First, we train a model to predict relative reflectance ordering between image patches (`brighter', `darker', `same') from large-scale human annotations, producing a data-driven reflectance prior. Read More

What makes an image appear realistic? In this work, we are answering this question from a data-driven perspective by learning the perception of visual realism directly from large amounts of data. In particular, we train a Convolutional Neural Network (CNN) model that distinguishes natural photographs from automatically generated composite images. The model learns to predict visual realism of a scene in terms of color, lighting and texture compatibility, without any human annotations pertaining to it. Read More

We present an approach to learn a dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a Convolutional Neural Network (CNN) classifier. We propose Constrained CNN (CCNN), a method which uses a novel loss function to optimize for any set of linear constraints on the output space (i. Read More

Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While region-level models often feature dense pairwise connectivity, pixel-level models are considerably larger and have only permitted sparse graph structures. In this paper, we consider fully connected CRF models defined on the complete set of pixels in an image. Read More