# Philip C. Harris

## Contact Details

NamePhilip C. Harris |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (12) High Energy Physics - Experiment (11) Cosmology and Nongalactic Astrophysics (1) |

## Publications Authored By Philip C. Harris

**Authors:**Andreas Albert, Mihailo Backovic, Antonio Boveia, Oliver Buchmueller, Giorgio Busoni, Albert De Roeck, Caterina Doglioni, Tristan DuPree, Malcolm Fairbairn, Marie-Helene Genest, Stefania Gori, Giuliano Gustavino, Kristian Hahn, Ulrich Haisch, Philip C. Harris, Dan Hayden, Valerio Ippolito, Isabelle John, Felix Kahlhoefer, Suchita Kulkarni, Greg Landsberg, Steven Lowette, Kentarou Mawatari, Antonio Riotto, William Shepherd, Tim M. P. Tait, Emma Tolley, Patrick Tunney, Bryan Zaldivar, Markus Zinser

Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar "mono-X" search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. Read More

New jet observables are defined which characterize both fractal and scale-dependent contributions to the distribution of hadrons in a jet. These infrared safe observables, named Extended Fractal Observables (EFOs), have been applied to quark-gluon discrimination to demonstrate their potential utility. The EFOs are found to be individually discriminating and only weakly correlated to variables used in existing discriminators. Read More

**Authors:**Andreas Albert, Martin Bauer, Oliver Buchmueller, Jim Brooke, David G. Cerdeno, Matthew Citron, Gavin Davies, Annapaola de Cosa, Albert De Roeck, Andrea De Simone, Tristan Du Pree, John Ellis, Henning Flaecher, Malcolm Fairbairn, Alexander Grohsjean, Kristian Hahn, Ulrich Haisch, Philip C. Harris, Valentin V. Khoze, Greg Landsberg, Christopher McCabe, Bjoern Penning, Veronica Sanz, Christian Schwanenberger, Pat Scott, Nicholas Wardle

This White Paper is an input to the ongoing discussion about the extension and refinement of simplified Dark Matter (DM) models. Based on two concrete examples, we show how existing simplified DM models (SDMM) can be extended to provide a more accurate and comprehensive framework to interpret and characterise collider searches. In the first example we extend the canonical SDMM with a scalar mediator to include mixing with the Higgs boson. Read More

Searches for Dark Matter at the LHC are commonly described in terms of simplified models with scalar, pseudo-scalar, vector and axial-vector mediators. In this work we explore the constraints imposed on such models from the observed Dark Matter relic abundance. We present these constraints over a range of mediator masses relevant for the LHC and for future, higher energy colliders. Read More

**Authors:**Antonio Boveia, Oliver Buchmueller, Giorgio Busoni, Francesco D'Eramo, Albert De Roeck, Andrea De Simone, Caterina Doglioni, Matthew J. Dolan, Marie-Helene Genest, Kristian Hahn, Ulrich Haisch, Philip C. Harris, Jan Heisig, Valerio Ippolito, Felix Kahlhoefer, Valentin V. Khoze, Suchita Kulkarni, Greg Landsberg, Steven Lowette, Sarah Malik, Michelangelo Mangano, Christopher McCabe, Stephen Mrenna, Priscilla Pani, Tristan du Pree, Antonio Riotto, David Salek, Kai Schmidt-Hoberg, William Shepherd, Tim M. P. Tait, Lian-Tao Wang, Steven Worm, Kathryn Zurek

This document summarises the proposal of the LHC Dark Matter Working Group on how to present LHC results on $s$-channel simplified dark matter models and to compare them to direct (indirect) detection experiments. Read More

We explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in $W$ jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies. Read More

We investigate the reach of the LHC Run 2 and that of a future circular hadron collider with up to 100 TeV centre of mass energy for the exploration of potential Dark Matter sectors. These dark sectors are conveniently and broadly described by simplified models. The simplified models we consider provide microscopic descriptions of interactions between the Standard Model partons and the dark sector particles mediated by the four basic types of messenger fields: scalar, pseudo-scalar, vector or axial-vector. Read More

**Authors:**Daniel Abercrombie, Nural Akchurin, Ece Akilli, Juan Alcaraz Maestre, Brandon Allen, Barbara Alvarez Gonzalez, Jeremy Andrea, Alexandre Arbey, Georges Azuelos, Patrizia Azzi, Mihailo Backović, Yang Bai, Swagato Banerjee, James Beacham, Alexander Belyaev, Antonio Boveia, Amelia Jean Brennan, Oliver Buchmueller, Matthew R. Buckley, Giorgio Busoni, Michael Buttignol, Giacomo Cacciapaglia, Regina Caputo, Linda Carpenter, Nuno Filipe Castro, Guillelmo Gomez Ceballos, Yangyang Cheng, John Paul Chou, Arely Cortes Gonzalez, Chris Cowden, Francesco D'Eramo, Annapaola De Cosa, Michele De Gruttola, Albert De Roeck, Andrea De Simone, Aldo Deandrea, Zeynep Demiragli, Anthony DiFranzo, Caterina Doglioni, Tristan du Pree, Robin Erbacher, Johannes Erdmann, Cora Fischer, Henning Flaecher, Patrick J. Fox, Benjamin Fuks, Marie-Helene Genest, Bhawna Gomber, Andreas Goudelis, Johanna Gramling, John Gunion, Kristian Hahn, Ulrich Haisch, Roni Harnik, Philip C. Harris, Kerstin Hoepfner, Siew Yan Hoh, Dylan George Hsu, Shih-Chieh Hsu, Yutaro Iiyama, Valerio Ippolito, Thomas Jacques, Xiangyang Ju, Felix Kahlhoefer, Alexis Kalogeropoulos, Laser Seymour Kaplan, Lashkar Kashif, Valentin V. Khoze, Raman Khurana, Khristian Kotov, Dmytro Kovalskyi, Suchita Kulkarni, Shuichi Kunori, Viktor Kutzner, Hyun Min Lee, Sung-Won Lee, Seng Pei Liew, Tongyan Lin, Steven Lowette, Romain Madar, Sarah Malik, Fabio Maltoni, Mario Martinez Perez, Olivier Mattelaer, Kentarou Mawatari, Christopher McCabe, Théo Megy, Enrico Morgante, Stephen Mrenna, Siddharth M. Narayanan, Andy Nelson, Sérgio F. Novaes, Klaas Ole Padeken, Priscilla Pani, Michele Papucci, Manfred Paulini, Christoph Paus, Jacopo Pazzini, Björn Penning, Michael E. Peskin, Deborah Pinna, Massimiliano Procura, Shamona F. Qazi, Davide Racco, Emanuele Re, Antonio Riotto, Thomas G. Rizzo, Rainer Roehrig, David Salek, Arturo Sanchez Pineda, Subir Sarkar, Alexander Schmidt, Steven Randolph Schramm, William Shepherd, Gurpreet Singh, Livia Soffi, Norraphat Srimanobhas, Kevin Sung, Tim M. P. Tait, Timothee Theveneaux-Pelzer, Marc Thomas, Mia Tosi, Daniele Trocino, Sonaina Undleeb, Alessandro Vichi, Fuquan Wang, Lian-Tao Wang, Ren-Jie Wang, Nikola Whallon, Steven Worm, Mengqing Wu, Sau Lan Wu, Hongtao Yang, Yong Yang, Shin-Shan Yu, Bryan Zaldivar, Marco Zanetti, Zhiqing Zhang, Alberto Zucchetta

This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations. Read More

If the recently discovered Higgs boson's couplings deviate from the Standard Model expectation, we may anticipate new resonant physics in the weak boson fusion channels resulting from high scale unitarity sum rules of longitudinal gauge boson scattering. Motivated by excesses in analyses of multi-leptons+missing energy+jets final states during run 1, we perform a phenomenological investigation of these channels at the LHC bounded by current Higgs coupling constraints. Such an approach constrains the prospects to observe such new physics at the LHC as a function of very few and generic parameters and allows the investigation of the strong requirement of probability conservation in the electroweak sector to high energies. Read More

We outline and investigate a set of benchmark simplified models with the aim of providing a minimal simple framework for an interpretation of the existing and forthcoming searches of dark matter particles at the LHC. The simplified models we consider provide microscopic QFT descriptions of interactions between the Standard Model partons and the dark sector particles mediated by the four basic types of messenger fields: scalar, pseudo-scalar, vector or axial-vector. Our benchmark models are characterised by four to five parameters, including the mediator mass and width, the dark matter mass and an effective coupling(s). Read More

We propose a new method for pileup mitigation by implementing "pileup per particle identification" (PUPPI). For each particle we first define a local shape $\alpha$ which probes the collinear versus soft diffuse structure in the neighborhood of the particle. The former is indicative of particles originating from the hard scatter and the latter of particles originating from pileup interactions. Read More

We investigate the constraints that the LHC can set on a 126 GeV Higgs boson that is an admixture of CP eigenstates. Traditional analyses rely on Higgs couplings to massive vector bosons, which are suppressed for CP-odd couplings, so that these analyses have limited sensitivity. Instead we focus on Higgs production in gluon fusion, which occurs at the same order in the strong coupling for both CP-even and -odd couplings. Read More