# Peter J. Catto

## Publications Authored By Peter J. Catto

Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global $\delta f$ continuum code that generalizes neoclassical calculations to allow stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. Read More

The induced electric field in a tokamak drives a parallel electron current flow. In an inhomogeneous, finite beta plasma, when this electron flow is comparable to the ion thermal speed, the Alfven mode wave solutions of the electromagnetic gyrokinetic equation can become nearly purely growing kink modes. Using the new "low-flow" version of the gyrokinetic code GS2 developed for momentum transport studies [Barnes et al 2013 Phys. Read More

The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. Read More

Any viable stellarator reactor will need to be nearly omnigenous, meaning the radial guiding-center drift velocity averages to zero over time for all particles. While omnigenity is easier to achieve than quasisymmetry, we show here that several properties of quasisymmetric plasmas also apply directly or with only minor modification to the larger class of omnigenous plasmas. For example, concise expressions exist for the flow and current, closely resembling those for a tokamak, and these expressions are explicit in that no magnetic differential equations remain. Read More

A low flow, $\delta f$ gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low flow ordering contains new terms, neglected in previous first principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry. Read More

We show that in perfectly quasi-isodynamic magnetic fields, which are generally non-quasisymmetric and which can approximate fields of experimental interest, neoclassical calculations can be carried out analytically more completely than in a general stellarator. Here, we define a quasi-isodynamic field to be one in which the longitudinal adiabatic invariant is a flux function and in which the constant-B contours close poloidally. We first derive several geometric relations among the magnetic field components and the field strength. Read More

The complete short mean free path description of magnetized plasma in the drift ordering has recently been derived. The results correct the previous expressions for the ion pressure anisotropy (or parallel ion viscosity) and the perpendicular ion viscosity - the ion gyro-viscosity is unchanged. In addition, the electron problem is solved for the first time to obtain the electron pressure anisotropy (parallel electron viscosity) and the electron gyro-viscosity - the perpendicular electron viscosity is negligible. Read More