# Per Helander

## Publications Authored By Per Helander

**Affiliations:**

^{1}Max-Planck-Institut für Plasmaphysik,

^{2}Department of Physics, Chalmers University of Technology,

^{3}Max-Planck-Institut für Plasmaphysik,

^{4}Max-Planck-Institut für Plasmaphysik

**Category:**Physics - Plasma Physics

A potential threat to the performance of magnetically confined fusion plasmas is the problem of impurity accumulation, which causes the concentration of highly charged impurity ions to rise uncontrollably in the center of the plasma and spoil the energy confinement by excessive radiation. It has long been thought that the collisional transport of impurities in stellarators always leads to such accumulation (if the electric field points inwards, which is usually the case), whereas tokamaks, being axisymmetric, can benefit from "temperature screening", i.e. Read More

The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, 2014) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. Read More

**Authors:**Albert Mollén

^{1}, Matt Landreman

^{2}, Håkan M. Smith

^{3}, Stefanie Braun

^{4}, Per Helander

^{5}

**Affiliations:**

^{1}Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden,

^{2}Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, USA,

^{3}Max-Planck-Institut für Plasmaphysik, Greifswald, Germany,

^{4}Max-Planck-Institut für Plasmaphysik, Greifswald, Germany,

^{5}Max-Planck-Institut für Plasmaphysik, Greifswald, Germany

**Category:**Physics - Plasma Physics

Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al. Read More

A stellarator is said to be omnigeneous if all particles have vanishing average radial drifts. In omnigeneous stellarators, particles are perfectly confined in the absence of turbulence and collisions, whereas in non-omnigeneous configurations, particle can drift large radial distances. One of the consequences of omnigeneity is that the unfavorable inverse scaling with collisionality of the stellarator neoclassical fluxes disappears. Read More

In this work, we examine the validity of several common simplifying assumptions used in numerical neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation, including the commonly used incompressible-ExB-drift approximation and two other variants, corresponding to different effective particle trajectories. It is found that for electric fields below roughly one third of the resonant value, the different formulations give nearly identical results, demonstrating the incompressible ExB-drift approximation is quite accurate in this regime. Read More

Finite thermal velocity modifications to electron slowing-down rates may be important for the deduction of solar flare total electron energy. Here we treat both slowing-down and velocity diffusion of electrons in the corona at flare temperatures, for the case of a simple, spatially homogeneous source. Including velocity diffusion yields a consistent treatment of both `accelerated' and `thermal' electrons. Read More