Paul Huillery

Paul Huillery
Are you Paul Huillery?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Paul Huillery
Affiliation
Location

Pubs By Year

Pub Categories

 
Quantum Physics (2)
 
Physics - Soft Condensed Matter (1)
 
Physics - Atomic Physics (1)

Publications Authored By Paul Huillery

We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that reproduces the optical signals and allows us to connect the optical coherences and the populations. We use this to determine that the spontaneous ionization process in our system occurs due to collisions between Rydberg and ground state atoms in the EIT regime. Read More

The dipole blockade of Rydberg excitations is a hallmark of the strong interactions between atoms in these high-lying quantum states. One of the consequences of the dipole blockade is the suppression of fluctuations in the counting statistics of Rydberg excitations, of which some evidence has been found in previous experiments. Here we present experimental results on the dynamics and the counting statistics of Rydberg excitations of ultra-cold Rubidium atoms both on and off resonance, which exhibit sub- and super-Poissonian counting statistics, respectively. Read More

The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. Read More