# P. Slavich - Bonn University

## Contact Details

NameP. Slavich |
||

AffiliationBonn University |
||

CityBonn |
||

CountryGermany |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (46) High Energy Physics - Experiment (12) High Energy Physics - Lattice (1) |

## Publications Authored By P. Slavich

We present several advances in the effective field theory calculation of the Higgs mass in MSSM scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold corrections to the quartic Higgs coupling for generic values of the relevant SUSY-breaking parameters, including all contributions controlled by the strong gauge coupling and by the third-family Yukawa couplings. We also study the effects of a representative subset of dimension-six operators in the effective theory valid below the SUSY scale. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We compute the two-loop O(as*at) corrections to the Higgs boson masses in supersymmetric extensions of the Standard Model with Dirac gaugino masses. We rely on the effective-potential technique, allow for both Dirac and Majorana mass terms for the gluinos, and compute the corrections in both the DRbar and on-shell renormalisation schemes. We give detailed results for the MDGSSM and the MRSSM, and simple approximate formulae valid in the decoupling limit for all currently-studied variants of supersymmetric models with Dirac gluinos. Read More

We take a step towards a complete NLO-QCD determination of the production of a pair of Higgs scalars in the MSSM. Exploiting a low-energy theorem that connects the Higgs-gluon interactions to the derivatives of the gluon self-energy, we obtain analytic results for the one- and two-loop squark contributions to Higgs pair production in the limit of vanishing external momenta. We find that the two-loop squark contributions can have non-negligible effects in MSSM scenarios with stop masses below the TeV scale. Read More

The publicly available spectrum generators for the NMSSM often lead to different predictions for the mass of the standard model-like Higgs boson even if using the same renormalization scheme and two-loop accuracy. Depending on the parameter point, the differences can exceed 5 GeV, and even reach 8 GeV for moderate superparticle masses of up to 2 TeV. It is shown here that these differences can be traced back to the calculation of the running standard model parameters entering all calculations, to the approximations used in the two-loop corrections included in the different codes, and to different choices for the renormalization conditions and scales. Read More

We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of O(alpha_t*alpha_s) and O(alpha*alpha_s), i.e. Read More

Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. Read More

We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-production cross section in six benchmark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources of theoretical uncertainty in our calculation. Read More

We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section. Read More

**Authors:**G. Brooijmans, B. Gripaios, F. Moortgat, J. Santiago, P. Skands, D. Albornoz Vásquez, B. C. Allanach, A. Alloul, A. Arbey, A. Azatov, H. Baer, C. Balázs, A. Barr, L. Basso, M. Battaglia, P. Bechtle, G. Bélanger, A. Belyaev, K. Benslama, L. Bergström, A. Bharucha, C. Boehm, M. Bondarenko, O. Bondu, E. Boos, F. Boudjema, T. Bringmann, M. Brown, V. Bunichev, S. Calvet, M. Campanelli, A. Carmona, D. G. Cerdeño, M. Chala, R. S. Chivukula, D. Chowdhury, N. D. Christensen, M. Cirelli, S. Cox, K. Cranmer, J. Da Silva, T. Delahaye, A. De Roeck, A. Djouadi, E. Dobson, M. Dolan, F. Donato, G. Drieu La Rochelle, G. Duda, C. Duhr, B. Dumont, J. Edsjö, J. Ellis, C. Evoli, A. Falkowski, M. Felcini, B. Fuks, E. Gabrielli, D. Gaggero, S. Gascon-Shotkin, D. K. Ghosh, A. Giammanco, R. M. Godbole, P. Gondolo, T. Goto, D. Grasso, P. Gris, D. Guadagnoli, J. F. Gunion, U. Haisch, L. Hartgring, S. Heinemeyer, M. Hirsch, J. Hewett, A. Ismail, T. Jeltema, M. Kadastik, M. Kakizaki, K. Kannike, S. Khalil, J-L. Kneur, M. Krämer, S. Kraml, S. Kreiss, J. Lavalle, R. Leane, J. Lykken, L. Maccione, F. Mahmoudi, M. Mangano, S. P. Martin, D. Maurin, G. Moreau, S. Moretti, I. Moskalenko, G. Moultaka, M. Muhlleitner, I. Niessen, B. O'Leary, E. Orlando, P. Panci, G. Polesello, W. Porod, T. Porter, S. Profumo, H. Prosper, A. Pukhov, A. Racioppi, M. Raidal, M. Rausch de Traubenberg, A. Renaud, J. Reuter, T. G. Rizzo, T. Robens, A. Y. Rodríguez-Marrero, P. Salati, C. Savage, P. Scott, S. Sekmen, A. Semenov, C. -L. Shan, C. Shepherd-Themistocleous, E. H. Simmons, P. Slavich, C. Speckner, F. Staub, A. Strong, R. Taillet, F. S. Thomas, M. C. Thomas, I. Tomalin, M. Tytgat, M. Ughetto, L. Valéry, D. G. E. Walker, A. Weiler, S. M. West, C. D. White, A. J. Williams, A. Wingerter, C. Wymant, J. -H. Yu, C. -P. Yuan, D. Zerwas

We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 30 May-17 June, 2011). Our report includes new agreements on formats for interfaces between computational tools, new tool developments, important signatures for searches at the LHC, recommendations for presentation of LHC search results, as well as additional phenomenological studies. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We consider the gluon fusion production cross section of a scalar Higgs boson at NLO QCD in the SM and in the MSSM. We implement the calculation in the POWHEG approach, and match the NLO-QCD results with the PYTHIA and HERWIG QCD parton showers. We discuss a few representative scenarios in the SM and MSSM parameter spaces, with emphasis on the fermion and squark mass effects on the Higgs boson distributions. Read More

We present a calculation of the two-loop quark-squark-gluino contributions to pseudoscalar Higgs boson production via gluon fusion in the MSSM. We regularize the loop integrals using the Pauli-Villars method, and obtain explicit and compact analytic results based on an expansion in the heavy particle masses. Our results - valid when the pseudoscalar Higgs boson is lighter than squarks and gluinos - can be easily implemented in computer codes for an efficient and accurate determination of the pseudoscalar production cross section. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. Baglio, P. Bolzoni, R. Boughezal, O. Brein, C. Collins-Tooth, S. Dawson, S. Dean, A. Denner, S. Farrington, M. Felcini, M. Flechl, D. de Florian, S. Forte, M. Grazzini, C. Hackstein, T. Hahn, R. Harlander, T. Hartonen, S. Heinemeyer, J. Huston, A. Kalinowski, M. Krämer, F. Krauss, J. S. Lee, S. Lehti, F. Maltoni, K. Mazumdar, S. -O. Moch, A. Mück, M. Mühlleitner, P. Nason, C. Neu, C. Oleari, J. Olsen, S. Palmer, F. Petriello, G. Piacquadio, A. Pilaftsis, C. T. Potter, I. Puljak, J. Qian, D. Rebuzzi, L. Reina, H. Rzehak, M. Schumacher, P. Slavich, M. Spira, F. Stöckli, R. S. Thorne, M. Vazquez Acosta, T. Vickey, A. Vicini, D. Wackeroth, M. Warsinsky, M. Weber, G. Weiglein, C. Weydert, J. Yu, M. Zaro, T. Zirke

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the first 10 months' activities of the LHC Higgs Cross Sections Working Group. The main goal of the working group was to present the status-of-art on Higgs Physics at the LHC integrating all new results that have appeared in the last few years. The Report is more than a mere collection of the proceedings of the general meetings. Read More

**Authors:**F. Mahmoudi, S. Heinemeyer, A. Arbey, A. Bharucha, T. Goto, T. Hahn, U. Haisch, S. Kraml, M. Muhlleitner, J. Reuter, P. Skands, P. Slavich

We present the Flavour Les Houches Accord (FLHA) which specifies a unique set of conventions for flavour-related parameters and observables. The FLHA uses the generic SUSY Les Houches Accord (SLHA) file structure. It defines the relevant Standard Model masses, Wilson coefficients, decay constants, bag parameters, flavour observables, etc. Read More

We present a calculation of the two-loop bottom-sbottom-gluino contributions to Higgs boson production via gluon fusion in the MSSM. The calculation is based on an asymptotic expansion in the masses of the supersymmetric particles, which are assumed to be much heavier than the bottom quark and the Higgs bosons. We obtain explicit analytic results that allow for a straightforward identification of the dominant contributions in the NLO bottom corrections. Read More

**Authors:**J. M. Butterworth, F. Maltoni, F. Moortgat, P. Richardson, S. Schumann, P. Skands, J. Alwall, A. Arbey, L. Basso, S. Belov, A. Bharucha, F. Braam, A. Buckley, M. Campanelli, R. Chierici, A. Djouadi, L. Dudko, C. Duhr, F. Febres Cordero, P. Francavilla, B. Fuks, L. Garren, T. Goto, M. Grazzini, T. Hahn, U. Haisch, K. Hamilton, S. Heinemeyer, G. Hesketh, S. Hoeche, H. Hoeth, J. Huston, J. Kalinowski, D. Kekelidze, S. Kraml, H. Lacker, P. Lenzi, P. Loch, L. Lonnblad, F. Mahmoudi, E. Maina, D. Majumder, M. Mangano, K. Mazumdar, A. Martin, J. Monk, M. Muhlleitner, C. Oleari, S. Ovyn, R. Pittau, S. Plaetzer, G. Piacquadio, L. Reina, J. Reuter, X. Rouby, C. Robinson, T. Roy, M. D. Schwartz, H. Schulz, E. von Seggern, A. Sherstnev, F. Siegert, T. Sjostrand, P. Slavich, M. Spira, C. Taylor, M. Vesterinen, S. de Visscher, D. Wackeroth, S. Weinzierl, J. Winter, T. R. Wyatt

This is the summary and introduction to the proceedings contributions for the Les Houches 2009 "Tools and Monte Carlo" working group. Read More

We present the QCD corrections to R_b and to the Delta B=1 effective Hamiltonian in models with a second Higgs field that couples to the quarks respecting the criterion of Minimal Flavor Violation, thus belonging either to the (1,2)_1/2 or to the (8,2)_1/2 representation of SU(3)xSU(2)xU(1). After the inclusion of the QCD corrections, the prediction for R_b becomes practically insensitive to the choice of renormalization scheme for the top mass, which for the type-I and type-II models translates in a more robust lower bound on tan(beta). The QCD-corrected determinations of Rb and BR(B->Xs gamma) are used to discuss the constraints on the couplings of a (colored) charged Higgs boson to top and bottom quarks. Read More

We provide a full one-loop calculation of the self energies and tadpoles of the neutral Higgs bosons of the NMSSM. In addition, we compute the two-loop O(alpha_t*alpha_s+alpha_b*alpha_s) corrections to the neutral Higgs boson masses in the effective potential approximation. With respect to earlier calculations, the newly-computed corrections can account for shifts of a few GeV in the light scalar and pseudoscalar masses, and they can also sizeably affect the mixing between singlet and MSSM-like Higgs scalars. Read More

We study squark flavour violation in the anomaly mediated supersymmetry broken (AMSB) minimal supersymmetric standard model. Analytical expressions for the three-generational squark mass matrices are derived. We show that the anomaly-induced soft breaking terms have a decreasing amount of squark flavour violation when running from the GUT to the weak scale. Read More

We present explicit analytic results for the two-loop top/stop/gluino contributions to the cross section for the production of CP-even Higgs bosons via gluon fusion in the MSSM, under the approximation of neglecting the Higgs boson mass with respect to the masses of the particles circulating in the loops. The results are obtained employing the low-energy theorem for Higgs interactions adapted to the case of particle mixing. We discuss the validity of the approximation used by computing the first-order correction in an expansion in powers of the Higgs boson mass. Read More

**Authors:**M. M. Nojiri

^{1}, T. Plehn

^{2}, G. Polesello

^{3}, M. Alexander, B. C. Allanach, A. J. Barr, K. Benakli, F. Boudjema, A. Freitas, C. Gwenlan, S. Jager, S. Kraml, S. Kreiss, R. Lafaye, C. G. Lester, N. Kauer, C. Milstene, C. Moura, G. S. Muanza, A. R. Raklev, M. Rauch, M. Schmitt, S. Sekmen, P. Skands, P. Slavich, A. Sopczak, M. Spannowsky, D. R. Tovey, E. Turlay, C. F. Uhlemann, A. M. Weber, P. Zalewski, D. Zerwas

**Affiliations:**

^{1}ed.,

^{2}ed.,

^{3}ed.

**Category:**High Energy Physics - Phenomenology

This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop `Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitely performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment. Read More

**Authors:**T. Lari, L. Pape, W. Porod, J. A. Aguilar-Saavedra, F. del Aguila, B. C. Allanach, J. Alwall, Yu. Andreev, D. Aristizabal Sierra, A. Bartl, M. Beccaria, S. Bejar, L. Benucci, S. Bityukov, I. Borjanovic, G. Bozzi, G. Burdman, J. Carvalho, N. Castro, B. Clerbaux, F. de Campos, A. de Gouvea, C. Dennis, A. Djouadi, O. J. P. Eboli, U. Ellwanger, D. Fassouliotis, P. M. Ferreira, R. Frederix, B. Fuks, J. -M. Gerard, A. Giammanco, S. Gopalakrishna, T. Goto, B. Grzadkowski, J. Guasch, T. Hahn, S. Heinemeyer, A. Hektor, M. Herquet, B. Herrmann, K. Hidaka, M. K. Hirsch, K. Hohenwarter-Sodek, W. Hollik, G. W. S. Hou, T. Hurth, A. Ibarra, J. Illana, M. Kadastik, S. Kalinin, C. Karafasoulis, M. Karagoz Unel, T. Kernreiter, M. M. Kirsanov, M. Klasen, E. Kou, C. Kourkoumelis, S. Kraml, N. Krasnikov, F. Krauss, A. Kyriakis, V. Lemaitre, G. Macorini, M. B. Magro, W. Majerotto, F. Maltoni, R. Mehdiyev, M. Misiak, F. Moortgat, G. Moreau, M. Mühlleitner, M. Muntel, A. Onofre, E. Ozcan, F. Palla, L. Panizzi, L. Pape, S. Penaranda, R. Pittau, G. Polesello, A. Pukhov, M. Raidal, A. R. Raklev, L. Rebane, F. M. Renard, D. Restrepo, Z. Roupas, R. Santos, S. Schumann, G. Servant, F. Siegert, P. Skands, P. Slavich, J. Sola, M. Spira, S. Sultansoy, A. Toropin, A. Tricomi, J. Tseng, G. Unel, J. W. F. Valle, F. Veloso, A. Ventura, G. Vermisoglou, C. Verzegnassi, A. Villanova del Moral, G. Weiglein, M. Yilmaz

This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. Read More

**Authors:**G. Buchalla, T. K. Komatsubara, F. Muheim, L. Silvestrini, M. Artuso, D. M. Asner, P. Ball, E. Baracchini, G. Bell, M. Beneke, J. Berryhill, A. Bevan, I. I. Bigi, M. Blanke, Ch. Bobeth, M. Bona, F. Borzumati, T. Browder, T. Buanes, O. Buchmuller, A. J. Buras, S. Burdin, D. G. Cassel, R. Cavanaugh, M. Ciuchini, P. Colangelo, G. Crosetti, A. Dedes, F. De Fazio, S. Descotes-Genon, J. Dickens, Z. Dolezal, S. Durr, U. Egede, C. Eggel, G. Eigen, S. Fajfer, Th. Feldmann, R. Ferrandes, P. Gambino, T. Gershon, V. Gibson, M. Giorgi, V. V. Gligorov, B. Golob, A. Golutvin, Y. Grossman, D. Guadagnoli, U. Haisch, M. Hazumi, S. Heinemeyer, G. Hiller, D. Hitlin, T. Huber, T. Hurth, T. Iijima, A. Ishikawa, G. Isidori, S. Jager, A. Khodjamirian, P. Koppenburg, T. Lagouri, U. Langenegger, C. Lazzeroni, A. Lenz, V. Lubicz, W. Lucha, H. Mahlke, D. Melikhov, F. Mescia, M. Misiak, M. Nakao, J. Napolitano, N. Nikitin, U. Nierste, K. Oide, Y. Okada, P. Paradisi, F. Parodi, M. Patel, A. A. Petrov, T. N. Pham, M. Pierini, S. Playfer, G. Polesello, A. Policicchio, A. Poschenrieder, P. Raimondi, S. Recksiegel, P. Reznicek, A. Robert, S. Robertson, J. L. Rosner, G. Ruggiero, A. Sarti, O. Schneider, F. Schwab, S. Simula, S. Sivoklokov, P. Slavich, C. Smith, M. Smizanska, A. Soni, T. Speer, P. Spradlin, M. Spranger, A. Starodumov, B. Stech, A. Stocchi, S. Stone, C. Tarantino, F. Teubert, S. T'Jampens, K. Toms, K. Trabelsi, S. Trine, S. Uhlig, V. Vagnoni, J. J. van Hunen, G. Weiglein, A. Weiler, G. Wilkinson, Y. Xie, M. Yamauchi, G. Zhu, J. Zupan, R. Zwicky

With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavour physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC. Read More

**Authors:**B. C. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, D. Choudhury, K. Desch, U. Ellwanger, P. Gambino, R. Godbole, T. Goto, J. Guasch, M. Guchait, T. Hahn, S. Heinemeyer, C. Hugonie, T. Hurth, S. Kraml S. Kreiss, J. Lykken, F. Moortgat, S. Moretti, S. Penaranda, T. Plehn, W. Porod, A. Pukhov, P. Richardson, M. Schumacher, L. Silvestrini, P. Skands, P. Slavich, M. Spira, G. Weiglein, P. Wienemann

**Category:**High Energy Physics - Phenomenology

The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalisations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavour, as well as the simplest next-to-minimal model. Read More

We present the fortran code SusyBSG version 1.1, which computes the branching ratio for the decay B -> Xs gamma in the MSSM with Minimal Flavor Violation. The computation takes into account all the available NLO contributions, including the complete supersymmetric QCD corrections to the Wilson coefficients of the magnetic and chromomagnetic operators. Read More

We address the mu problem of gauge mediation by considering a singlet chiral superfield coupled to the Higgs and messenger fields. We compute the soft terms generated below the messenger scale and study the phenomenological consequences of the model. The experimental bound on the Higgs mass provides a severe constraint that identifies three special regions of parameters where the mass spectrum and the collider signatures can be distinct from ordinary gauge mediation. Read More

We perform a comprehensive analysis of the Minimal Supersymmetric Standard Model (MSSM) in the scenario where the scalar partners of the fermions and the Higgs particles (except for the Standard-Model-like one) are assumed to be very heavy and are removed from the low-energy spectrum. We first summarize our determination of the mass spectrum, in which we include the one-loop radiative corrections and resum to all orders the leading logarithms of the large scalar masses, and describe the implementation of these features in the FORTRAN code SuSpect which calculates the masses and couplings of the MSSM particles. We then study in detail the phenomenology of the model in scenarios where the gaugino mass parameters are non-universal at the GUT scale, which leads to very interesting features that are not present in the widely studied case of universal gaugino mass parameters. Read More

**Authors:**B. C. Allanach

^{1}, C. Grojean

^{2}, P. Skands

^{3}, E. Accomando, G. Azuelos, H. Baer, C. Balazs, G. Belanger, K. Benakli, F. Boudjema, B. Brelier, V. Bunichev, G. Cacciapaglia, M. Carena, D. Choudhury, P. -A. Delsart, U. De Sanctis, K. Desch, B. A. Dobrescu, L. Dudko, M. El Kacimi, U. Ellwanger, S. Ferrag, A. Finch, F. Franke, H. Fraas, A. Freitas, P. Gambino, N. Ghodbane, R. M. Godbole, D. Goujdami, Ph. Gris, J. Guasch, M. Guchait, T. Hahn, S. Heinemeyer, A. Hektor, S. Hesselbach, W. Hollik, C. Hugonie, T. Hurth, J. Idarraga, O. Jinnouchi, J. Kalinowski, J. -L. Kneur, S. Kraml, M. Kadastik, K. Kannike, R. Lafaye, G. Landsberg, T. Lari, J. S. Lee, J. Lykken, F. Mahmoudi, M. Mangano, A. Menon, D. J. Miller, T. Millet, C. Milstene, S. Montesano, F. Moortgat, G. Moortgat-Pick, S. Moretti, D. E. Morrissey, S. Muanza, M. M. Muhlleitner, M. Muntel, H. Nowak, T. Ohl, S. Penaranda, M. Perelstein, E. Perez, S. Perries, M. Peskin, J. Petzoldt, A. Pilaftsis, T. Plehn, G. Polesello, A. Pompos, W. Porod, H. Przysiezniak, A. Pukhov, M. Raidal, D. Rainwater, A. R. Raklev, J. Rathsman, J. Reuter, P. Richardson, S. D. Rindani, K. Rolbiecki, H. Rzehak, M. Schumacher, S. Schumann, A. Semenov, L. Serin, G. Servant, C. H. Shepherd-Themistocleous, S. Sherstnev, L. Silvestrini, R. K. Singh, P. Slavich, M. Spira, A. Sopczak, K. Sridhar, L. Tompkins, C. Troncon, S. Tsuno, K. Wagh, C. E. M. Wagner, G. Weiglein, P. Wienemann, D. Zerwas, V. Zhukov

**Affiliations:**

^{1}ed.,

^{2}ed.,

^{3}ed.

**Category:**High Energy Physics - Phenomenology

The work contained herein constitutes a report of the "Beyond the Standard Model'' working group for the Workshop "Physics at TeV Colliders", Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology. Read More

We compute the complete supersymmetric QCD corrections to the Wilson coefficients of the magnetic and chromomagnetic operators, relevant in the calculation of b -> s gamma decays, in the MSSM with Minimal Flavor Violation. We investigate the numerical impact of the new results for different choices of the MSSM parameters and of the scale where the quark and squark mass matrices are assumed to be aligned. We find that the corrections can be important when the superpartners are relatively light, and that they depend sizeably on the scale of alignment. Read More

**Authors:**J. A. Aguilar-Saavedra, A. Ali, B. C. Allanach, R. Arnowitt, H. A. Baer, J. A. Bagger, C. Balazs, V. Barger, M. Barnett, A. Bartl, M. Battaglia, P. Bechtle, G. Belanger, A. Belyaev, E. L. Berger, G. Blair, E. Boos, M. Carena, S. Y. Choi, F. Deppisch, A. De Roeck, K. Desch, M. A. Diaz, A. Djouadi, B. Dutta, S. Dutta, H. Eberl, J. Ellis, J. Erler, H. Fraas, A. Freitas, T. Fritzsche, R. M. Godbole, G. J. Gounaris, J. Guasch, J. Gunion, N. Haba, H. E. Haber, K. Hagiwara, L. Han, T. Han, H. -J. He, S. Heinemeyer, S. Hesselbach, K. Hidaka, I. Hinchliffe, M. Hirsch, K. Hohenwarter-Sodek, W. Hollik, W. S. Hou, T. Hurth, I. Jack, Y. Jiang, D. R. T. Jones, J. Kalinowski, T. Kamon, G. Kane, S. K. Kang, T. Kernreiter, W. Kilian, C. S. Kim, S. F. King, O. Kittel, M. Klasen, J. -L. Kneur, K. Kovarik, M. Kramer, S. Kraml, R. Lafaye, P. Langacker, H. E. Logan, W. -G. Ma, W. Majerotto, H. -U. Martyn, K. Matchev, D. J. Miller, M. Mondragon, G. Moortgat-Pick, S. Moretti, T. Mori, G. Moultaka, S. Muanza, M. M. Muhlleitner, B. Mukhopadhyaya, U. Nauenberg, M. M. Nojiri, D. Nomura, H. Nowak, N. Okada, K. A. Olive, W. Oller, M. Peskin, T. Plehn, G. Polesello, W. Porod, F. Quevedo, D. Rainwater, J. Reuter, P. Richardson, K. Rolbiecki, P. Roy, R. Ruckl, H. Rzehak, P. Schleper, K. Siyeon, P. Skands, P. Slavich, D. Stockinger, P. Sphicas, M. Spira, T. Tait, D. R. Tovey, J. W. F. Valle, C. E. M. Wagner, Ch. Weber, G. Weiglein, P. Wienemann, Z. -Z. Xing, Y. Yamada, J. M. Yang, D. Zerwas, P. M. Zerwas, R. -Y. Zhang, X. Zhang, S. -H. Zhu

**Category:**High Energy Physics - Phenomenology

High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. Read More

We compute the gluino lifetime and branching ratios in Split Supersymmetry. Using an effective-theory approach, we resum the large logarithmic corrections controlled by the strong gauge coupling and the top Yukawa coupling. We find that the resummation of the radiative corrections has a sizeable numerical impact on the gluino decay width and branching ratios. Read More

We present the implementation of the radiative corrections of the Higgs sector in three public computer codes for the evaluation of the particle spectrum in the Minimal Supersymmetric Standard Model, Softsusy, Spheno and SuSpect. We incorporate the full one-loop corrections to the Higgs boson masses and the electroweak symmetry breaking conditions, as well as the two-loop corrections controlled by the strong gauge coupling and the Yukawa couplings of the third generation fermions. We include also the corrections controlled by the tau Yukawa coupling that we derived for completeness. Read More

**Authors:**B. C. Allanach, A. Aranda, H. Baer, C. Balazs, M. Battaglia, G. Belanger, F. Boudjema, K. Desch, J. L. Diaz-Cruz, M. Dittmar, A. Djouadi, G. Dewhirst, D. Dominici, M. Escalier, L. Fano, S. Ferrag, S. Gascon-Shotkin, S. Gennai, R. Godbole, J. Guasch, M. Guchait, J. Gunion, S. Heinemeyer, J. Hewett, J. Kalinowski, K. Kawagoe, W. Kilian, J-L. Kneur, S. Kraml, R. Lafaye, B. Laforge, C. G. Lester, K. Mazumdar, Y. Mambrini, F. Moortgat, G. Moortgat-Pick, S. Moretti, M. Muhlleitner, A-S. Nicollerat, A. Nikitenko, M. Nojiri, T. Plehn, G. Polesello, W. Porod, D. Prieur, A. Pukhov, O. Ravat, P. Richardson, T. G. Rizzo, A. de Roeck, S. Schumann, P. Skands, P . Slavich, M. Spira, M. Spiropoulu, K. Sridhar, D. R. Tovey, G. Weiglein, J. D. Wells, D. Zerwas

**Category:**High Energy Physics - Phenomenology

The work contained herein constitutes a report of the ``Beyond the Standard Model'' working group for the Workshop "Physics at TeV Colliders", Les Houches, France, 26 May--6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Read More

**Authors:**P. Skands, B. C. Allanach, H. Baer, C. Balázs, G. Bélanger, F. Boudjema, A. Djouadi, R. Godbole, J. Guasch, S. Heinemeyer, W. Kilian, J-L. Kneur, S. Kraml, F. Moortgat, S. Moretti, M. Mühlleitner, W. Porod, A. Pukhov, P. Richardson, S. Schumann, P. Slavich, M. Spira, G. Weiglein

**Category:**High Energy Physics - Phenomenology

An accord specifying a unique set of conventions for supersymmetric extensions of the Standard Model together with generic file structures for 1) supersymmetric model specifications and input parameters, 2) electroweak scale supersymmetric mass and coupling spectra, and 3) decay tables is defined, to provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators. Read More

We complete the effective potential calculation of the two-loop, top/bottom Yukawa corrections to the Higgs boson masses in the Minimal Supersymmetric Standard Model, by computing the O(at^2 + at*ab + ab^2) contributions for arbitrary values of the bottom Yukawa coupling. We also compute the corrections to the minimization conditions of the effective potential at the same perturbative order. Our results extend the existing O(at^2) calculation, and are relevant in regions of the parameter space corresponding to tan(beta) >> 1. Read More

We study the O(at*as + at^2) two-loop corrections to the minimization conditions of the MSSM effective potential, providing compact analytical formulae for the Higgs tadpoles. We connect these results with the renormalization group running of the MSSM parameters from the grand unification scale down to the weak scale, and discuss the corrections to the Higgs mixing parameter mu and to the running CP-odd Higgs mass mA in various scenarios of gravity-mediated SUSY breaking. We find that the O(at*as) and O(at^2) contributions partially cancel each other in the minimization conditions. Read More

The status of the evaluation of the MSSM Higgs sector is reviewed. The phenomenological impact of recently obtained corrections is discussed. In particular it is shown that the upper bound on m_h within the MSSM is shifted upwards. Read More

We compute the O(ab*as) two-loop corrections to the neutral Higgs boson masses in the Minimal Supersymmetric Standard Model, using the effective potential approach. Such corrections can be important in the region of parameter space corresponding to tan(beta)>>1 and sizeable mu. In spite of the formal analogy with the O(at*as) corrections, there are important differences, since the dominant effects are controlled by the sbottom-Higgs scalar couplings. Read More

**Affiliations:**

^{1}Bonn University

**Category:**High Energy Physics - Phenomenology

We present a computation of the O(at*as + at^2) two--loop corrections to the MSSM Higgs masses. An appropriate use of the effective potential approach allows us to obtain simple analytical formulae, valid for arbitrary values of mA and of the mass parameters in the stop sector. In a large region of the parameter space the O(at^2) corrections are comparable to the O(at*as) ones, increasing the prediction for mh by several GeV. Read More

We compute the O(alpha_t^2) two-loop corrections to the neutral CP-even Higgs boson mass matrix in the Minimal Supersymmetric Standard Model, for arbitrary values of mA and of the parameters in the stop sector, in the effective potential approach. In a large region of parameter space these corrections are sizeable, increasing the prediction for mh by several GeV. We present explicit analytical formulae for a simplified case. Read More

We compute the O(alpha_t alpha_s) two-loop corrections to the neutral Higgs boson masses in the Minimal Supersymmetric extension of the Standard Model. An appropriate use of the effective potential allows us to obtain simple analytical formulae, valid for arbitrary values of mA and of the mass parameters in the stop sector. We elucidate some subtleties of the effective potential calculation, and find full agreement with the numerical output of the existing diagrammatic calculation. Read More

**Affiliations:**

^{1}Padua University and INFN, Padua

**Category:**High Energy Physics - Phenomenology

We perform a critical reassessment of the constraints on the R-parity and baryon number violating (s)top couplings coming from flavor physics. In particular, we study K0-K0bar mixing, including QCD corrections and a class of diagrams that were neglected in previous analyses: both effects give sizeable contributions. We explain how the resulting bounds can be translated into constraints on individual couplings in the simplest class of flavor models, based on U(1) horizontal symmetries. Read More

**Affiliations:**

^{1}Padua University and INFN, Padua

**Category:**High Energy Physics - Phenomenology

It was recently claimed that single stop production at the Tevatron, occurring via R-parity (and baryon number) violating couplings, could lead to observable signals. In this talk I present some results of a work in progress, showing that rare B decays and K0-K0bar mixing strongly constrain such a possibility. Read More