P. S. Dev

P. S. Dev
Are you P. S. Dev?

Claim your profile, edit publications, add additional information:

Contact Details

Name
P. S. Dev
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (47)
 
High Energy Physics - Experiment (29)
 
Cosmology and Nongalactic Astrophysics (13)
 
High Energy Astrophysical Phenomena (5)
 
High Energy Physics - Theory (3)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
 
General Relativity and Quantum Cosmology (2)
 
Quantum Physics (2)
 
Nuclear Experiment (1)
 
Solar and Stellar Astrophysics (1)
 
Astrophysics of Galaxies (1)

Publications Authored By P. S. Dev

In recent years, $B$-physics experiments (BABAR, Belle and LHCb) have reported an appreciable ($\gtrsim 3 \sigma$) deviation in the tree-level observables $R_{D^{(*)}}$. We first show the anomaly necessarily implies model-independent collider signals of the form $pp \to b \tau \bar{\nu}_{\tau}$ that should be vigorously searched for in the high-energy collisions at the LHC as a complementary test of the anomaly. Next we suggest that this surprising experimental finding may be intertwined with the radiative stability of the Standard Model (SM) Higgs boson. Read More

We use the LHC Higgs data to derive updated constraints on electroweak-scale sterile neutrinos that naturally occur in many low-scale seesaw extensions of the Standard Model to explain the neutrino masses. We also analyze the signal sensitivity for a new final state involving a single charged lepton and two jets with missing energy, which arises from the decay of sterile neutrinos produced through the Higgs and $W,Z$ boson mediated processes at the LHC. Future prospects of these sterile neutrino signals in precision Higgs measurements, as well as at a future 100 TeV collider, are also discussed. Read More

As the LHC Higgs data persistently suggest the couplings of the observed 125 GeV Higgs boson to be consistent with the Standard Model (SM) expectations, any extended Higgs sector must lead to the so-called SM alignment limit, where one of the Higgs bosons behaves exactly like that of the SM. In the context of the Two Higgs Doublet Model (2HDM), this alignment is often associated with either decoupling of the heavy Higgs sector or accidental cancellations in the 2HDM potential. We present a novel symmetry justification for `natural' alignment without necessarily decoupling or fine-tuning. Read More

We point out that in generic TeV scale seesaw models for neutrino masses with local $B-L$ symmetry breaking, there is a phenomenologically allowed range of parameters where the Higgs field responsible for $B-L$ symmetry breaking leaves a physical real scalar field with mass around GeV scale. This particle (denoted here by $H_3$) is weakly mixed with the Standard Model Higgs field ($h$) with mixing $\theta_1\lesssim m_{H_3}/m_h$ barring fine-tuned cancellation. In the specific case when the $B-L$ symmetry is embedded into the TeV scale left-right seesaw scenario, we show that the bounds on the $h-H_3$ mixing $\theta_1$ become further strengthened due to low energy flavor constraints, thus forcing the light $H_3$ to be long lived, with displaced vertex signals at the LHC. Read More

New physics coupling to the Higgs sector of the Standard Model can lead to dangerously large corrections to the Higgs mass. We investigate this problem in the type II seesaw model for neutrino mass, where a weak scalar triplet is introduced. The interplay of direct and indirect constraints on the type II seesaw model with its contribution to the Higgs mass is analyzed. Read More

We show that the longitudinal beam polarization option at a future electron-positron collider provides an unambiguous distinction between low-scale seesaw models of neutrino mass. This is possible due to the fact that the pair production cross section of the heavy neutrinos in seesaw models is sensitive to the polarization of the initial lepton beams, and for a suitable choice of the polarization, shows a clear enhancement over the unpolarized cross section. More interestingly, the choice of the beam polarization for which the enhancement is maximum is governed by the size of the light-heavy neutrino mixing parameter. Read More

We point out that in the minimal left-right realization of TeV scale seesaw for neutrino masses, there is a phenomenologically allowed range of parameters where one of the neutral scalar particles from the right-handed symmetry breaking sector could have a mass at the GeV scale. We discuss the constraints on this particle from low-energy flavor observables, as well as from high-energy collider data. We find that such a light particle is necessarily long-lived, and can be searched for at the LHC via displaced signals of a collimated photon jet. Read More

We briefly review the current status and future prospects of testing the low-scale seesaw models of neutrino mass generation at the energy frontier, with particular emphasis on the ongoing searches at the LHC. Read More

The right-handed neutrinos within the type-I seesaw mechanism can induce large radiative corrections to the Higgs mass, and naturalness arguments can then be used to set limits on their mass scale and Yukawa couplings. Driven by minimality, we consider the presence of two degenerate right-handed neutrinos. We compare the limits from naturalness with the ones from the stability of the electroweak vacuum and from lepton flavor violation. Read More

We show that in a class of non-supersymmetric left-right extensions of the Standard Model (SM), the lightest right-handed neutrino (RHN) can play the role of thermal Dark Matter (DM) in the Universe for a wide mass range from TeV to PeV. Our model is based on the gauge group $SU(3)_c \times SU(2)_L\times SU(2)_R\times U(1)_{Y_L}\times U(1)_{Y_R}$ in which a heavy copy of the SM fermions are introduced and the stability of the RHN DM is guaranteed by an automatic $Z_2$ symmetry present in the leptonic sector. In such models the active neutrino masses are obtained via the type-II seesaw mechanism. Read More

There exists a class of ultralight Dark Matter (DM) models which could form a Bose-Einstein condensate (BEC) in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC DM halo intervening along the line of sight of a gravitational wave (GW) signal could induce an observable change in the speed of GW, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GW as a new probe of the BEC DM parameter space. Read More

We point out that a class of non-supersymmetric models based on the gauge group $SU(3)_C \times SU(2)_L\times SU(2)_R\times U(1)_{Y_L}\times U(1)_{Y_R}$ possesses an automatic, exact $Z_{2 }$ symmetry under which the fermions in the $SU(2)_R\times U(1)_{Y_R}$ sector (called $R$-sector) are odd and those in the standard model sector (called $L$-sector) are even. This symmetry, which is different from the usual parity symmetry of the left-right symmetric models, persists in the lepton sector even after the gauge symmetry breaks down to $SU(3)_C \times U(1)_{\rm EM}$. This keeps the lightest right-handed neutrino naturally stable, thereby allowing it to play the role of dark matter (DM) in the Universe. Read More

Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. Read More

We discuss a minimal solution to the long-standing $(g-2)_\mu$ anomaly in a simple extension of the Standard Model with an extra $Z'$ vector boson that has only flavor off-diagonal couplings to the second and third generation of leptons, i.e. $\mu, \tau, \nu_\mu, \nu_\tau$ and their antiparticles. Read More

We discuss a simple non-supersymmetric model based on the electroweak gauge group $SU(2)_L\times SU(2)^\prime\times U(1)_{B-L}$ where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of $SU(2)^\prime$, play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant $s$-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. Read More

2016Jun

This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider. Read More

The presence of $R$-parity violating (RPV) supersymmetric interactions involving high-energy neutrinos can lead to resonant production of TeV-scale squarks inside large-volume neutrino detectors. Using the ultra-high energy neutrino events observed recently at the IceCube, with the fact that for a given power-law flux of astrophysical neutrinos, there is no statistically significant deviation in the current data from the Standard Model expectations, we derive robust upper limits on the RPV couplings as a function of the resonantly-produced squark mass, independent of the other unknown model parameters, as long as the squarks decay dominantly to 2-body final states involving leptons and quarks through the RPV couplings. With more statistics, we expect these limits to be comparable/complementary to the existing limits from direct collider searches and other low-energy processes. Read More

If neutrino masses arise from a TeV-scale minimal Left-Right seesaw model, the ensuing extended Higgs sector with neutral, singly and doubly-charged scalars has a plethora of implications for new Higgs boson searches beyond the Standard Model at future hadron colliders, such as the $\sqrt s=14$ TeV High-Luminosity Large Hadron Collider (HL-LHC) and the proposed $\sqrt s=100$ TeV collider (FCC-hh or SPPC). In this article, we provide a glimpse of this new physics in the Higgs sector. Our discussion focuses on the minimal non-supersymmetric version of the Left-Right model with high-scale parity breaking but TeV-scale $SU(2)_R$-breaking, a property desirable to suppress the type-II seesaw contribution to neutrino masses. Read More

2016Feb
Authors: R. Adhikari, M. Agostini, N. Anh Ky, T. Araki, M. Archidiacono, M. Bahr, J. Baur, J. Behrens, F. Bezrukov, P. S. Bhupal Dev, D. Borah, A. Boyarsky, A. de Gouvea, C. A. de S. Pires, H. J. de Vega, A. G. Dias, P. Di Bari, Z. Djurcic, K. Dolde, H. Dorrer, M. Durero, O. Dragoun, M. Drewes, G. Drexlin, Ch. E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, N. W. Evans, A. Faessler, P. Filianin, V. Fischer, A. Fleischmann, J. A. Formaggio, J. Franse, F. M. Fraenkle, C. S. Frenk, G. Fuller, L. Gastaldo, A. Garzilli, C. Giunti, F. Glück, M. C. Goodman, M. C. Gonzalez-Garcia, D. Gorbunov, J. Hamann, V. Hannen, S. Hannestad, S. H. Hansen, C. Hassel, J. Heeck, F. Hofmann, T. Houdy, A. Huber, D. Iakubovskyi, A. Ianni, A. Ibarra, R. Jacobsson, T. Jeltema, J. Jochum, S. Kempf, T. Kieck, M. Korzeczek, V. Kornoukhov, T. Lachenmaier, M. Laine, P. Langacker, T. Lasserre, J. Lesgourgues, D. Lhuillier, Y. F. Li, W. Liao, A. W. Long, M. Maltoni, G. Mangano, N. E. Mavromatos, N. Menci, A. Merle, S. Mertens, A. Mirizzi, B. Monreal, A. Nozik, A. Neronov, V. Niro, Y. Novikov, L. Oberauer, E. Otten, N. Palanque-Delabrouille, M. Pallavicini, V. S. Pantuev, E. Papastergis, S. Parke, S. Pascoli, S. Pastor, A. Patwardhan, A. Pilaftsis, D. C. Radford, P. C. -O. Ranitzsch, O. Rest, D. J. Robinson, P. S. Rodrigues da Silva, O. Ruchayskiy, N. G. Sanchez, M. Sasaki, N. Saviano, A. Schneider, F. Schneider, T. Schwetz, S. Schönert, S. Scholl, F. Shankar, R. Shrock, N. Steinbrink, L. Strigari, F. Suekane, B. Suerfu, R. Takahashi, N. Thi Hong Van, I. Tkachev, M. Totzauer, Y. Tsai, C. G. Tully, K. Valerius, J. W. F. Valle, D. Venos, M. Viel, M. Vivier, M. Y. Wang, C. Weinheimer, K. Wendt, L. Winslow, J. Wolf, M. Wurm, Z. Xing, S. Zhou, K. Zuber

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. Read More

We show that if the new physics beyond the Standard Model is associated with a first-order phase transition around $10^7-10^8$ GeV, the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales. Read More

We discuss the current status and future prospects of heavy neutrino searches at the energy frontier, which might play an important role in vindicating the simplest seesaw paradigm as the new physics responsible for neutrino mass generation. After summarizing the current search limits and potential improvements at hadron colliders, we highlight the unparalleled sensitivities achievable in the clean environment of future lepton colliders. Read More

We present a possible interpretation of the recent diphoton excess reported by the $\sqrt s=13$ TeV LHC data in quark seesaw left-right models with vectorlike fermions proposed to solve the strong $CP$ problem without the axion. The gauge singlet real scalar field responsible for the mass of the vectorlike fermions has the right production cross section and diphoton branching ratio to be identifiable with the reported excess at around 750 GeV diphoton invariant mass. Various ways to test this hypothesis as more data accumulates at the LHC are proposed. Read More

We explain the recent excess seen by ATLAS and CMS experiments at around 750 GeV in the di-photon invariant mass as a narrow width sneutrino decaying to di-photons via a stau loop in R-parity violating Supersymmetry. The stau mass is predicted to be somewhere between half the resonant sneutrino mass and half the sneutrino mass plus 14 GeV. The scenario also predicts further signal channels at an invariant mass of 750 GeV, the most promising being into di-jets and $WW$. Read More

It has been recently pointed out that a momentum-dependent coupling of the asymmetric Dark Matter (ADM) with nucleons can explain the broad disagreement between helioseismological observables and the predictions of standard solar models. In this paper, we propose a minimal simplified ADM model consisting of a scalar and a pseudoscalar mediator, in addition to a Dirac fermionic DM, for generating such momentum-dependent interactions. Remarkably, the pseudoscalar with mass around 750 GeV can simultaneously explain the solar anomaly and the recent diphoton excess observed by both ATLAS and CMS experiments in the early $\sqrt s=13$ TeV LHC data. Read More

We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw dominance for the light neutrino masses, the triplet of mass comparable to or smaller than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio $r\lesssim {\cal O}(1)$ is still experimentally allowed and can be explored in the future LFV experiments. Read More

We propose a new possible explanation of the ATLAS di-boson excess: that it is due to heavy resonant slepton production, followed by decay into di-smuons. The smuon has a mass not too far from the W and Z masses, and so it is easily confused with W or Z bosons after its subsequent decay into di-jets, through a supersymmetry violating and R-parity violating interaction. Such a scenario is not currently excluded by other constraints and remains to be definitively tested in Run II of the LHC. Read More

Since the current LHC Higgs data suggest the couplings of the observed 125 GeV Higgs boson to be close to the Standard Model (SM) expectations, any extended Higgs sector must lead to the so-called SM alignment limit, where one of the Higgs bosons behaves exactly like that of the SM. In the context of the Two Higgs Doublet Model (2HDM), this alignment is often associated with either decoupling of the heavy Higgs sector or accidental cancellations in the 2HDM potential. We present a novel symmetry justification for 'natural' alignment without necessarily decoupling or fine-tuning. Read More

We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Read More

Inspired by the recent diboson excess observed at the LHC and possible interpretation within a TeV-scale Left-Right symmetric framework, we explore its implications for low-energy experiments searching for lepton number and flavor violation. Assuming a simple Type-II seesaw mechanism for neutrino masses, we show that for the right-handed (RH) gauge boson mass and coupling values required to explain the LHC anomalies, the RH contribution to the lepton number violating process of neutrinoless double beta decay ($0\nu\beta\beta$) is already constrained by current experiments for relatively low-mass (MeV-GeV) RH neutrinos. The future ton-scale $0\nu\beta\beta$ experiments could probe most of the remaining parameter space, irrespective of the neutrino mass hierarchy and uncertainties in the oscillation parameters and nuclear matrix elements. Read More

We show that the excess events observed in a number of recent LHC resonance searches can be simultaneously explained within a minimal non-supersymmetric left-right inverse seesaw model for neutrino masses with $W_R$ mass around 1.9 TeV. We further show that the minimal TeV-scale particle content that leads to gauge coupling unification in this model predicts $g_R\simeq 0. Read More

Defects in silicon carbide are of intense and increasing interest for quantum-based applications due to this material's properties and technological maturity. We calculate the multi-particle symmetry adapted wave functions of the negatively charged silicon vacancy defect in hexagonal silicon carbide via use of group theory and density functional theory and find the effects of spin-orbit and spin-spin interactions on these states. Although we focused on $\textrm{V}_{\textrm{Si}}^-$ in 4H-SiC, because of its unique fine structure due to odd number of active electrons, our methods can be easily applied to other defect centers of different polytpes, especially to the 6H-SiC. Read More

The silicon vacancy in silicon carbide is a strong emergent candidate for applications in quantum information processing and sensing. We perform room temperature optically-detected magnetic resonance and spin echo measurements on an ensemble of vacancies and find the properties depend strongly on magnetic field. The spin echo decay time varies from less than 10 $\mu$s at low fields to 80 $\mu$s at 68 mT, and a strong field-dependent spin echo modulation is also observed. Read More

This is a mini-review on the mechanism of leptogenesis, with a special emphasis on low-scale leptogenesis models which are testable in foreseeable laboratory experiments at Energy and Intensity frontiers. We also stress the importance of flavor effects in the calculation of the lepton asymmetry and the necessity of a flavor-covariant framework to consistently capture these effects. Read More

A simple TeV scale model for baryon and lepton number violation is presented, where neutrino mass arises via a one-loop radiative seesaw effect and B-violation obeys $\Delta B=2$ selection rule. The stability of proton is connected to the neutrino mass generation. Matter-antimatter asymmetry is generated in this model via resonant baryogenesis mechanism. Read More

2015Apr

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (Search for Hidden Particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau\to 3\mu$ and to search for weakly-interacting sub-GeV dark matter candidates. Read More

The current LHC Higgs data provide strong constraints on possible deviations of the couplings of the observed 125 GeV Higgs boson from the Standard Model (SM) expectations. Therefore, it now becomes compelling that any extended Higgs sector must comply with the so-called SM alignment limit. In the context of the Two Higgs Doublet Model (2HDM), this alignment is often associated with either decoupling of the heavy Higgs sector or accidental cancellations in the 2HDM potential. Read More

We discuss the future prospects of heavy neutrino searches at next generation lepton colliders. In particular, we focus on the planned electron-positron colliders, operating in two different beam modes, namely, $e^+e^-$ and $e^-e^-$. In the $e^+e^-$ beam mode, we consider various production and decay modes of the heavy neutrino ($N$), and find that the final state with $e+2j+{E\!\!\!/}_T$, arising from the $e^+e^-\to N\nu$ production mode, is the most promising channel. Read More

Contrary to the common lore based on naive dimensional analysis, the seesaw scale for neutrino masses can be naturally in the TeV range, with small parameters coming from radiative corrections. We present one such class of type-I seesaw models, based on the left-right gauge group $SU(2)_L\times SU(2)_R\times U(1)_{B-L}$ realized at the TeV scale, which fits the observed neutrino oscillation parameters as well as other low energy constraints. We discuss how the small parameters of this scenario can arise naturally from one loop effects. Read More

Flavour effects play an important role in the statistical evolution of particle number densities in several particle physics phenomena. We present a fully flavour-covariant formalism for transport phenomena, in order to consistently capture all flavour effects in the system. We explicitly study the scenario of Resonant Leptogenesis (RL), and show that flavour covariance requires one to consider generically off-diagonal number densities, rank-4 rate tensors in flavour space, and non-trivial generalization of the discrete symmetries C, P and T. Read More

We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. Read More

Primordial inflation and Dark Matter (DM) could both belong to the hidden sector. It is therefore plausible that the inflaton, which drives inflation, could couple to the DM either directly or indirectly, thus providing a common origin for both luminous and non-luminous matter. We explore this interesting possibility and show that, in certain scenarios, the DM mass can be correlated with the tensor-to-scalar ratio. Read More

Understanding the spectral and flavor composition of the astrophysical neutrino flux responsible for the recently observed ultra-high energy events at IceCube is of great importance for both astrophysics and particle physics. We perform a statistical likelihood analysis to the 3-year IceCube data and derive the allowed range of the spectral index and flux normalization for various well-motivated physical flavor compositions at source. While most of the existing analyses so far assume the flavor composition of the neutrinos at an astrophysical source to be (1:2:0), it seems rather unnatural to assume only one type of source, once we recognize the possibility of at least two physical sources. Read More

We describe a loopwise perturbative truncation scheme for quantum transport equations in the Kadanoff-Baym formalism, which does not necessitate the use of the so-called Kadanoff-Baym or quasi-particle ansaetze for dressed propagators. This truncation scheme is used to study flavour effects in the context of Resonant Leptogenesis (RL), showing explicitly that, in the weakly-resonant regime, there exist two distinct and pertinent flavour effects in the heavy-neutrino sector: (i) the resonant mixing and (ii) the oscillations between different heavy-neutrino flavours. Moreover, we illustrate that Kadanoff-Baym and quasi-particle ansaetze, whilst appropriate for the flavour-singlet dressed charged-lepton and Higgs propagators of the RL scenario, should not be applied to the dressed heavy-neutrino propagators. Read More

We present a fully flavour-covariant formalism for transport phenomena and apply it to study the flavour-dynamics of Resonant Leptogenesis (RL). We show that this formalism provides a complete and unified description of RL, consistently accounting for three distinct physical phenomena: (i) resonant mixing and (ii) coherent oscillations between different heavy-neutrino flavours, as well as (iii) quantum decoherence effects in the charged-lepton sector. We describe the necessary emergence of higher-rank tensors in flavour space, arising from the unitarity cuts of partial self-energies. Read More

We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\tan \beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Read More

We discuss leptogenesis constraints on the mass of the right-handed $W$-boson ($W_R$) in a TeV-scale Left-Right seesaw model (LRSM) for neutrino masses. For generic Dirac mass of the neutrinos, i.e. Read More

We analyze various contributions to neutrinoless double beta decay ($0\nu\beta\beta$) in a TeV-scale Left-Right Symmetric Model (LRSM) for type-I seesaw dominance. We find that the momentum-dependent effects due to $W_L-W_R$ exchange ($\lambda$-diagram) and $W_L-W_R$ mixing ($\eta$-diagram) could give dominant contributions to the $0\nu\beta\beta$ amplitude in a wide range of the LRSM parameter space. In particular, for a relatively large $W_L-W_R$ mixing, the $\eta$-contribution by itself could saturate the current experimental limit on the $0\nu\beta\beta$ half-life, thereby providing stringent constraints on the relevant LRSM parameters, complementary to the indirect constraints derived from lepton flavor violating observables. Read More

Seesaw models with a small lepton number breaking can naturally accommodate electroweak-scale pseudo-Dirac neutrinos with a sizable mixing with the active neutrinos, while satisfying the light neutrino oscillation data. Due to the smallness of the lepton number breaking parameter, the 'smoking gun' collider signature of same-sign dileptons is suppressed, and the heavy neutrinos in these models would manifest at the LHC dominantly through lepton number conserving trilepton final states. Using the recent CMS results for anomalous production of multilepton events at $\sqrt{s}$=8 TeV LHC with an integrated luminosity of $19. Read More