P. Nadolsky - conveners

P. Nadolsky
Are you P. Nadolsky?

Claim your profile, edit publications, add additional information:

Contact Details

Name
P. Nadolsky
Affiliation
conveners
City
Brechin
Country
United Kingdom

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (11)
 
Nuclear Experiment (3)
 
Nuclear Theory (2)

Publications Authored By P. Nadolsky

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, R. Costa69, D. Curtin70, M. Dall'Osso71, A. David72, S. Dawson73, J. de Blas74, W. de Boer75, P. de Castro Manzano76, C. Degrande77, R. L. Delgado78, F. Demartin79, A. Denner80, B. Di Micco81, R. Di Nardo82, S. Dittmaier83, A. Dobado84, T. Dorigo85, F. A. Dreyer86, M. Dührssen87, C. Duhr88, F. Dulat89, K. Ecker90, K. Ellis91, U. Ellwanger92, C. Englert93, D. Espriu94, A. Falkowski95, L. Fayard96, R. Feger97, G. Ferrera98, A. Ferroglia99, N. Fidanza100, T. Figy101, M. Flechl102, D. Fontes103, S. Forte104, P. Francavilla105, E. Franco106, R. Frederix107, A. Freitas108, F. F. Freitas109, F. Frensch110, S. Frixione111, B. Fuks112, E. Furlan113, S. Gadatsch114, J. Gao115, Y. Gao116, M. V. Garzelli117, T. Gehrmann118, R. Gerosa119, M. Ghezzi120, D. Ghosh121, S. Gieseke122, D. Gillberg123, G. F. Giudice124, E. W. N. Glover125, F. Goertz126, D. Gonçalves127, J. Gonzalez-Fraile128, M. Gorbahn129, S. Gori130, C. A. Gottardo131, M. Gouzevitch132, P. Govoni133, D. Gray134, M. Grazzini135, N. Greiner136, A. Greljo137, J. Grigo138, A. V. Gritsan139, R. Gröber140, S. Guindon141, H. E. Haber142, C. Han143, T. Han144, R. Harlander145, M. A. Harrendorf146, H. B. Hartanto147, C. Hays148, S. Heinemeyer149, G. Heinrich150, M. Herrero151, F. Herzog152, B. Hespel153, V. Hirschi154, S. Hoeche155, S. Honeywell156, S. J. Huber157, C. Hugonie158, J. Huston159, A. Ilnicka160, G. Isidori161, B. Jäger162, M. Jaquier163, S. P. Jones164, A. Juste165, S. Kallweit166, A. Kaluza167, A. Kardos168, A. Karlberg169, Z. Kassabov170, N. Kauer171, D. I. Kazakov172, M. Kerner173, W. Kilian174, F. Kling175, K. Köneke176, R. Kogler177, R. Konoplich178, S. Kortner179, S. Kraml180, C. Krause181, F. Krauss182, M. Krawczyk183, A. Kulesza184, S. Kuttimalai185, R. Lane186, A. Lazopoulos187, G. Lee188, P. Lenzi189, I. M. Lewis190, Y. Li191, S. Liebler192, J. Lindert193, X. Liu194, Z. Liu195, F. J. Llanes-Estrada196, H. E. Logan197, D. Lopez-Val198, I. Low199, G. Luisoni200, P. Maierhöfer201, E. Maina202, B. Mansoulié203, H. Mantler204, M. Mantoani205, A. C. Marini206, V. I. Martinez Outschoorn207, S. Marzani208, D. Marzocca209, A. Massironi210, K. Mawatari211, J. Mazzitelli212, A. McCarn213, B. Mellado214, K. Melnikov215, S. B. Menari216, L. Merlo217, C. Meyer218, P. Milenovic219, K. Mimasu220, S. Mishima221, B. Mistlberger222, S. -O. Moch223, A. Mohammadi224, P. F. Monni225, G. Montagna226, M. Moreno Llácer227, N. Moretti228, S. Moretti229, L. Motyka230, A. Mück231, M. Mühlleitner232, S. Munir233, P. Musella234, P. Nadolsky235, D. Napoletano236, M. Nebot237, C. Neu238, M. Neubert239, R. Nevzorov240, O. Nicrosini241, J. Nielsen242, K. Nikolopoulos243, J. M. No244, C. O'Brien245, T. Ohl246, C. Oleari247, T. Orimoto248, D. Pagani249, C. E. Pandini250, A. Papaefstathiou251, A. S. Papanastasiou252, G. Passarino253, B. D. Pecjak254, M. Pelliccioni255, G. Perez256, L. Perrozzi257, F. Petriello258, G. Petrucciani259, E. Pianori260, F. Piccinini261, M. Pierini262, A. Pilkington263, S. Plätzer264, T. Plehn265, R. Podskubka266, C. T. Potter267, S. Pozzorini268, K. Prokofiev269, A. Pukhov270, I. Puljak271, M. Queitsch-Maitland272, J. Quevillon273, D. Rathlev274, M. Rauch275, E. Re276, M. N. Rebelo277, D. Rebuzzi278, L. Reina279, C. Reuschle280, J. Reuter281, M. Riembau282, F. Riva283, A. Rizzi284, T. Robens285, R. Röntsch286, J. Rojo287, J. C. Romão288, N. Rompotis289, J. Roskes290, R. Roth291, G. P. Salam292, R. Salerno293, M. O. P. Sampaio294, R. Santos295, V. Sanz296, J. J. Sanz-Cillero297, H. Sargsyan298, U. Sarica299, P. Schichtel300, J. Schlenk301, T. Schmidt302, C. Schmitt303, M. Schönherr304, U. Schubert305, M. Schulze306, S. Sekula307, M. Sekulla308, E. Shabalina309, H. S. Shao310, J. Shelton311, C. H. Shepherd-Themistocleous312, S. Y. Shim313, F. Siegert314, A. Signer315, J. P. Silva316, L. Silvestrini317, M. Sjodahl318, P. Slavich319, M. Slawinska320, L. Soffi321, M. Spannowsky322, C. Speckner323, D. M. Sperka324, M. Spira325, O. Stål326, F. Staub327, T. Stebel328, T. Stefaniak329, M. Steinhauser330, I. W. Stewart331, M. J. Strassler332, J. Streicher333, D. M. Strom334, S. Su335, X. Sun336, F. J. Tackmann337, K. Tackmann338, A. M. Teixeira339, R. Teixeira de Lima340, V. Theeuwes341, R. Thorne342, D. Tommasini343, P. Torrielli344, M. Tosi345, F. Tramontano346, Z. Trócsányi347, M. Trott348, I. Tsinikos349, M. Ubiali350, P. Vanlaer351, W. Verkerke352, A. Vicini353, L. Viliani354, E. Vryonidou355, D. Wackeroth356, C. E. M. Wagner357, J. Wang358, S. Wayand359, G. Weiglein360, C. Weiss361, M. Wiesemann362, C. Williams363, J. Winter364, D. Winterbottom365, R. Wolf366, M. Xiao367, L. L. Yang368, R. Yohay369, S. P. Y. Yuen370, G. Zanderighi371, M. Zaro372, D. Zeppenfeld373, R. Ziegler374, T. Zirke375, J. Zupan376
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group, 375The LHC Higgs Cross Section Working Group, 376The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We analyze the impact of the recent HERA run I+II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of PDFs. New PDFs at NLO and NNLO, called CT14$_{\textrm{HERA2}}$, are obtained by a refit of the CT14 data ensembles, in which the HERA run I combined measurements are replaced by the new HERA run I+II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14$_{\textrm{HERA2}}$ but with an additional shape parameter for describing the strange quark PDF. Read More

We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Read More

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Read More

The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. Read More

We present new parton distribution functions (PDFs) up to next-to-next-to-leading order (NNLO) from the CTEQ-TEA global analysis of quantum chromodynamics. These differ from previous CT PDFs in several respects, including the use of data from LHC experiments and the new D0 charged lepton rapidity asymmetry data, as well as the use of more flexible parametrization of PDFs that, in particular, allows a better fit to different combinations of quark flavors. Predictions for important LHC processes, especially Higgs boson production at 13 TeV, are presented. Read More

The impact of recent measurements of heavy-flavour production in deep inelastic $ep$ scattering and in $pp$ collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions $x$ of the proton momentum, down to $x \sim 5 \times 10^{-6}$. Read More

2014May
Affiliations: 1conveners, 2conveners, 3conveners, 4conveners, 5conveners, 6conveners, 7conveners, 8conveners, 9conveners, 10conveners, 11conveners, 12conveners, 13conveners, 14conveners, 15conveners, 16conveners, 17conveners, 18conveners, 19conveners, 20conveners, 21conveners, 22conveners, 23conveners, 24conveners, 25conveners, 26conveners, 27conveners, 28conveners, 29conveners, 30conveners, 31conveners, 32conveners, 33conveners, 34conveners, 35conveners, 36conveners, 37conveners, 38conveners, 39conveners, 40conveners, 41conveners, 42conveners, 43conveners, 44conveners, 45conveners, 46conveners, 47conveners, 48conveners, 49conveners, 50conveners, 51conveners, 52conveners, 53conveners, 54conveners, 55conveners, 56conveners, 57conveners, 58conveners, 59conveners, 60conveners, 61conveners, 62conveners, 63conveners, 64conveners, 65conveners, 66conveners, 67conveners, 68conveners, 69conveners, 70conveners, 71conveners, 72conveners, 73conveners, 74conveners, 75conveners, 76conveners, 77conveners, 78conveners, 79conveners, 80conveners

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

A "meta-analysis" is a method for comparison and combination of nonperturbative parton distribution functions (PDFs) in a nucleon obtained with heterogeneous procedures and assumptions. Each input parton distribution set is converted into a "meta-parametrization" based on a common functional form. By analyzing parameters of the meta-parametrizations from all input PDF ensembles, a combined PDF ensemble can be produced that has a smaller total number of PDF member sets than the original ensembles. Read More

We study the uncertainties of the Higgs boson production cross section through the gluon fusion subprocess at the LHC (with $\sqrt s=7, 8$ and $14$ TeV) arising from the uncertainties of the parton distribution functions (PDFs) and of the value of the strong coupling constant $\alpha_s(M_Z)$. These uncertainties are computed by two complementary approaches, based on the Hessian and the Lagrange Multiplier methods within the CTEQ-TEA global analysis framework. We find that their predictions for the Higgs boson cross section are in good agreement. Read More

We present an analysis of nonperturbative contributions to the transverse momentum distribution of $Z/\gamma^*$ bosons produced at hadron colliders. The new data on the angular distribution $\phi^*_\eta$ of Drell-Yan pairs measured at the Tevatron is shown to be in excellent agreement with a perturbative QCD prediction based on the Collins-Soper-Sterman (CSS) resummation formalism at NNLL accuracy. Using these data, we determine the nonperturbative component of the CSS resummed cross section and estimate its dependence on arbitrary resummation scales and other factors. Read More

We discuss the impact of the charm quark mass in the CTEQ NNLO global analysis of parton distribution functions of the proton. The $\bar{\rm MS}$ mass $m_c(m_c)$ of the charm quark is extracted in the S-ACOT-$\chi$ heavy-quark factorization scheme at ${\cal O}(\alpha_s^2)$ accuracy and found to be in agreement with the world-average value. Impact on $m_c(m_c)$ of combined HERA-1 data on semiinclusive charm production at HERA collider and contributing systematic uncertainties are reviewed. Read More

We study the effect of the charm quark mass in the CTEQ global analysis of parton distribution functions (PDFs) of the proton. Constraints on the $\bar{\rm MS}$ mass of the charm quark are examined at the next-to-next-to-leading order (NNLO) accuracy in the S-ACOT-$\chi$ heavy-quark factorization scheme. The value of the charm quark mass from the hadronic scattering data in the CT10 NNLO fit, including semiinclusive charm production in DIS at HERA collider, is found to agree with the world average value. Read More

We present next-to-next-to-leading order (NNLO) parton distribution functions (PDFs) from the CTEQ-TEA group. The CT10NNLO PDF fit is based on essentially the same global data sets used in the CT10 and CT10W NLO PDF analyses. After exploring the goodness of the fits to the HERA combined data and the Tevatron jet data, we present various predictions at NNLO accuracy for both existing and forthcoming precision measurements from the CERN Large Hadron Collider. Read More

We analyze the role of nuclear modifications of parton distributions, notably, the nuclear shadowing and antishadowing corrections, in production of lepton pairs from decays of neutral electroweak gauge bosons in proton-lead and lead-collisions at the LHC. Using the Collins-Soper-Sterman resummation formalism that we extended to the case of nuclear parton distributions, we observed a direct correlation between the predicted behavior of the transverse momentum and rapidity distributions of the produced vector bosons and the pattern of quark and gluon nuclear modifications. This makes Drell-Yan pair production in $pA$ and $AA$ collisions at the LHC a useful tool for constraining nuclear PDFs in the small-$x$ shadowing and moderate-$x$ antishadowing regions. Read More

We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. Read More

Angular asymmetries are simple, intuitive, model-independent observables used to identify spins of new elementary particles. In the case of Drell-Yan-like boson resonances, we generalize the well-known center-edge angular asymmetry to optimize spin identification when only a limited sample of events is available. By choosing simple weight functions in integrals over the polar angle theta, such as cos theta to the nth power, we can improve spin discrimination significantly in production and decays of spin 0, 1, and 2 bosons. Read More

We summarize a new analysis of the distribution $\phi_{\eta}^{*}$ of charged leptons produced in decays of $Z$ and $\gamma^{*}$ bosons in the Collins-Soper-Sterman (CSS) formalism for transverse momentum resummation. By comparing the $\phi_{\eta}^{*}$ distribution measured at the Tevatron with the resummed CSS cross section with approximate ${\cal O}(\alpha_{s}^{2})$ Wilson coefficients, we constrain the magnitude of the nonperturbative Gaussian smearing factor and analyze its uncertainty caused by variations in scale parameters. We find excellent agreement between the $\phi_{\eta}^{*}$ data and our theoretical prediction, provided by the \textsc{ResBos} resummation program. Read More

EKS is a numerical program that predicts differential cross sections for production of single-inclusive hadronic jets and jet pairs at next-to-leading order (NLO) accuracy in a perturbative QCD calculation. We describe MEKS 1.0, an upgraded EKS program with increased numerical precision, suitable for comparisons to the latest experimental data from the Large Hadron Collider and Tevatron. Read More

Recent developments in the CTEQ-TEA global QCD analysis are presented. The parton distribution functions CT10-NNLO are described, constructed by comparing data from many experiments to NNLO approximations of QCD. Read More

The 2011 Les Houches workshop was the first to confront LHC data. In the two years since the previous workshop there have been significant advances in both soft and hard QCD, particularly in the areas of multi-leg NLO calculations, the inclusion of those NLO calculations into parton shower Monte Carlos, and the tuning of the non-perturbative parameters of those Monte Carlos. These proceedings describe the theoretical advances that have taken place, the impact of the early LHC data, and the areas for future development. Read More

2012Jan
Authors: LHC Higgs Cross Section Working Group, S. Dittmaier1, C. Mariotti2, G. Passarino3, R. Tanaka4, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We present a next-to-next-to-leading order (NNLO) realization of a general quark mass scheme (S-ACOT-$\chi$) in deep inelastic scattering and explore the impact of NNLO terms on heavy-quark structure functions $F_{2,L}^{c}(x,Q)$. An amended QCD factorization theorem for DIS is discussed that validates the S-ACOT-$\chi$ scheme to all orders in the QCD coupling strength. As a new feature, kinematical constraints on collinear production of heavy quarks that are crucial near the heavy-quark threshold are included in the amended factorization theorem. Read More

We discuss an NNLO realization of the general mass scheme S-ACOT-$\chi$ for treatment of heavy-flavour production in neutral current deep-inelastic scattering. Practical implementation of the NNLO calculation is illustrated on the example of semi-inclusive structure functions $F_{2 c}(x,Q)$ and $F_{L c}(x,Q)$. Read More

2011Aug
Authors: D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang, A. Accardi, E. Aschenauer, M. Burkardt, R. Ent, V. Guzey, D. Hasch, K. Kumar, M. A. C. Lamont, Y. Li, W. J. Marciano, C. Marquet, F. Sabatie, M. Stratmann, F. Yuan, S. Abeyratne, S. Ahmed, C. Aidala, S. Alekhin, M. Anselmino, H. Avakian, A. Bacchetta, J. Bartels, H. BC, J. Beebe-Wang, S. Belomestnykh, I. Ben-Zvi, G. Beuf, J. Blumlein, M . Blaskiewicz, A. Bogacz, S. J. Brodsky, T. Burton, R. Calaga, X. Chang, I. O. Cherednikov, P. Chevtsov, G. A. Chirilli, C. Ciofi degli Atti, I. C. Cloet, A. Cooper-Sarkar, R. Debbe, Ya. Derbenev, A. Deshpande, F. Dominguez, A. Dumitru, R. Dupre, B. Erdelyi, C. Faroughy, S. Fazio, A. Fedotov, J. R. Forshaw, R. Geraud, K. Gallmeister, L. Gamberg, J. -H. Gao, D. Gassner, F. Gelis, G. P. Gilfoyle, G. Goldstein, K. Golec-Biernat, V. P. Goncalves, M. Gonderinger, M. Guzzi, P. Hagler, H. Hahn, L. Hammons, Y. Hao, P. He, T. Horn, W. A. Horowitz, M. Huang, A. Hutton, B. Jager, W. Jackson, A. Jain, E. C. Johnson, Z. -B. Kang, L. P. Kaptari, D. Kayran, J. Kewisch, Y. Koike, A. Kondratenko, B. Z. Kopeliovich, Y. V. Kovchegov, G. Krafft, P. Kroll, S. Kumano, K. Kumericki, T. Lappi, T. Lautenschlager, R. Li, Z. -T. Liang, V. N. Litvinenko, S. Liuti, Y. Luo, D. Muller, G. Mahler, A. Majumder, S. Manikonda, F. Marhauser, G. McIntyre, M. Meskauskas, W. Meng, A. Metz, C. B. Mezzetti, G. A. Miller, M. Minty, S. -O. Moch, V. Morozov, U. Mosel, L. Motyka, H. Moutarde, P. J. Mulders, B. Musch, P. Nadel-Turonski, P. Nadolsky, F. Olness, P. N. Ostrumov, B. Parker, B. Pasquini, K. Passek-Kumericki, A. Pikin, F. Pilat, B. Pire, H. Pirner, C. Pisano, E. Pozdeyev, A. Prokudin, V. Ptitsyn, X. Qian, J. -W. Qiu, M. Radici, A. Radyushkin, T. Rao, R. Rimmer, F. Ringer, S. Riordan, T. Rogers, J. Rojo, T. Roser, R. Sandapen, R. Sassot, T. Satogata, H. Sayed, A. Schafer, G. Schnell, P. Schweitzer, B. Sheehy, J. Skaritka, G. Soyez, M. Spata, H. Spiesberger, A. M. Stasto, N. G. Stefanis, M. Strikman, M. Sullivan, L. Szymanowski, K. Tanaka, S. Taneja, S. Tepikian, B. Terzic, Y. Than, T. Toll, D. Trbojevic, E. Tsentalovich, N. Tsoupas, K. Tuchin, J. Tuozzolo, T. Ullrich, A. Vossen, S. Wallon, G. Wang, H. Wang, X. -N. Wang, S. Webb, C. Weiss, Q. Wu, B. -W. Xiao, W. Xu, B. Yunn, A. Zelenski, Y. Zhang, J. Zhou, P. Zurita

This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Read More

This document is intended as a study of benchmark cross sections at the LHC (at 7 TeV) at NLO using modern parton distribution functions currently available from the 6 PDF fitting groups that have participated in this exercise. It also contains a succinct user guide to the computation of PDFs, uncertainties and correlations using available PDF sets. A companion note, also submitted to the archive, provides an interim summary of the current recommendations of the PDF4LHC working group for the use of parton distribution functions and of PDF uncertainties at the LHC, for cross section and cross section uncertainty calculations. Read More

We summarize several projects carried out by the CTEQ global analysis of parton distribution functions (PDFs) of the proton during 2010. We discuss a recently released CT10 family of PDFs with a fixed and variable QCD coupling strength; implementation of combined HERA and Tevatron lepton asymmetry data sets; theoretical issues associated with the analysis of $W$ charge asymmetry in PDF fits; PDFs for leading-order shower programs; and constraints on new color-octet fermions from the hadronic data. Read More

We report a parton distribution function (PDF) analysis of a complete set of hadron scattering data, in which a color-octet fermion (such as a gluino of supersymmetry) is incorporated as an extra parton constituent along with the usual standard model constituents. The data set includes the most up-to-date results from deep-inelastic scattering and from jet production in hadron collisions. Another feature is the inclusion in the fit of data from determinations of the strong coupling alpha_s(Q) at large and small values of the hard scale Q. Read More

We extract new parton distribution functions (PDFs) of the proton by global analysis of hard scattering data in the general-mass framework of perturbative quantum chromodynamics. Our analysis includes new theoretical developments together with the most recent collider data from deep-inelastic scattering, vector boson production, and single-inclusive jet production. Due to the difficulty in fitting both the DO Run-II W lepton asymmetry data and some fixed-target DIS data, we present two families of PDFs, CT10 and CT10W, without and with these high-luminosity W lepton asymmetry data included in the global analysis. Read More

We examine the dependence of parton distribution functions (PDFs) on the value of the QCD coupling strength $\alpha_{s}(M_{Z})$. We explain a simple method that is rigorously valid in the quadratic approximation normally applied in PDF fitting, and fully reproduces the correlated dependence of theoretical cross sections on $\alpha_s$ and PDF parameters. This method is based on a statistical relation that allows one to add the uncertainty produced by $\alpha_s$, computed with some special PDF sets, in quadrature with the PDF uncertainty obtained for the fixed $\alpha_s$ value (such as the CTEQ6. Read More

This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009. Read More

In this paper, conventional Global QCD analysis is generalized to produce parton distributions optimized for use with event generators at the LHC. This optimization is accomplished by combining the constraints due to existing hard-scattering experimental data with those from anticipated cross sections for key representative SM processes at LHC (by the best available theory) as joint input to the global analyses. The PDFs obtained in these new type of global analyses using matrix elements calculated in any given order will be best suited to work with event generators of that order, for predictions at the LHC. Read More

We overview progress in the development of general-purpose CTEQ PDFs. The preprint is based on four talks presented by H.-L. Read More

Inclusive jet production data are important for constraining the gluon distribution in the global QCD analysis of parton distribution functions. With the addition of recent CDF and D0 Run II jet data, we study a number of issues that play a role in determining the up-to-date gluon distribution and its uncertainty, and produce a new set of parton distributions that make use of that data. We present in detail the general procedures used to study the compatibility between new data sets and the previous body of data used in a global fit. Read More

The zero-mass (ZM) parton formalism is widely used in high-energy physics because of its simplicity and historical importance, even while massive quarks (c,b,t) are playing an increasingly prominent role in particle phenomenology, including global QCD analyses of parton distributions based on the more precise general-mass (GM) QCD formalism. In view of this dichotomy, we show how the obvious inconsistencies of the conventional implementation of the ZM formalism can be corrected, while preserving the simplicity of its matrix elements. The resulting intermediate mass (IM) scheme for perturbative QCD calculation can be considered either as improved ZM formulation with realistic treatment of heavy-flavor kinematics; or as a simplified GM formulation with approximate ZM hard cross sections. Read More

We investigate the possible measurement of parity-violating spin asymmetries in jet pair production in proton-proton collisions at the Brookhaven Relativistic Heavy Ion Collider (RHIC), with the goal to constrain longitudinally polarized quark and antiquark distribution functions. A measurable asymmetry could be observed in the vicinity of the massive weak W boson resonance, where the parity-violating signal appears above the parity-conserving background and is enhanced by interference of the strong and electroweak production amplitudes. We discuss the potential for such measurements, perhaps the first opportunity to measure a parity-violating asymmetry in proton-proton collisions at RHIC. Read More

In the context of a recent CTEQ6.6 global analysis, we review a new technique for studying correlated theoretical uncertainties in hadronic observables associated with imperfect knowledge of parton distribution functions (PDFs). The technique is based on the computation of correlations between the predicted values of physical observables in the Hessian matrix method. Read More

I discuss advances in the determination of strange, charm, and bottom quark parton distribution functions obtained in the CTEQ6.5 and CTEQ6.6 global analyses. Read More

The latest CTEQ6.6 parton distributions, obtained by global analysis of hard scattering data in the framework of general-mass perturbative QCD, are employed to study theoretical predictions and their uncertainties for significant processes at the Fermilab Tevatron and CERN Large Hadron Collider. The previously observed increase in predicted cross sections for the standard-candle W and Z boson production processes in the general-mass scheme (compared to those in the zero-mass scheme) is further investigated and quantified. Read More

An overview is given of recent progress on a variety of fronts in the global QCD analysis of the parton structure of the nucleon and its implication for collider phenomenology, carried out by various subgroups of the CTEQ collaboration. Read More

The systematic treatment of heavy quark mass effects in DIS in current CTEQ global analysis is summarized. Applications of this treatment to the comparison between theory and experimental data on DIS charm production are described. The possibility of intrinsic charm in the nucleon is studied. Read More

The top quark and electroweak bosons (W and Z) represent the most massive fundamental particles yet discovered, and as such refer directly to the Standard Model's greatest remaining mystery: the mechanism by which all particles gained mass. This report summarizes the work done within the top-ew group of the Tevatron-for-LHC workshop. It represents a collection of both Tevatron results, and LHC predictions. Read More

A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Read More

The strangeness degrees of freedom in the parton structure of the nucleon are explored in the global analysis framework, using the new CTEQ6.5 implementation of the general mass perturbative QCD formalism of Collins. We systematically determine the constraining power of available hard scattering experimental data on the magnitude and shape of the strange quark and anti-quark parton distributions. Read More

We compute the contributions to continuum photon pair production at hadron colliders from processes initiated by gluon-gluon and gluon-quark scattering into two photons through a four-leg virtual quark loop. Complete two-loop cross sections in perturbative quantum chromodynamics are combined with contributions from soft parton radiation resummed to all orders in the strong coupling strength. The structure of the resummed cross section is examined in detail, including a new type of unintegrated parton distribution function affecting azimuthal angle distributions of photons in the pair's rest frame. Read More

The search for Higgs bosons in both the standard model and its extensions is well under way at the Tevatron. As the integrated luminosity collected increases into the multiple inverse femptobarn range, these searches are becoming very interesting indeed. Meanwhile, the construction of the Large Hadron Collider (LHC) and its associated experiments at CERN are nearing completion. Read More

We evaluate the effect of the bottom-quark mass on resummed transverse momentum distributions of supersymmetric Higgs bosons at the Tevatron and LHC. The mass of the bottom quark acts as a non-negligible momentum scale at small transverse momenta and affects resummation of soft and collinear radiation in this region. The improved treatment of the b-quark mass and kinematical effects lead to observable modifications in the resummed predictions for both colliders. Read More