P. N. Burrows - University of Oxford, Particle Physics Department

P. N. Burrows
Are you P. N. Burrows?

Claim your profile, edit publications, add additional information:

Contact Details

Name
P. N. Burrows
Affiliation
University of Oxford, Particle Physics Department
Location

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Experiment (23)
 
Physics - Accelerator Physics (10)
 
High Energy Physics - Phenomenology (9)
 
Physics - Instrumentation and Detectors (4)
 
Physics - Plasma Physics (3)
 
Physics - Computational Physics (1)

Publications Authored By P. N. Burrows

2016Aug
Authors: H. Abramowicz, A. Abusleme, K. Afanaciev, N. Alipour Tehrani, C. Balázs, Y. Benhammou, M. Benoit, B. Bilki, J. -J. Blaising, M. J. Boland, M. Boronat, O. Borysov, I. Božović-Jelisavčić, M. Buckland, S. Bugiel, P. N. Burrows, T. K. Charles, W. Daniluk, D. Dannheim, R. Dasgupta, M. Demarteau, M. A. Díaz Gutierrez, G. Eigen, K. Elsener, U. Felzmann, M. Firlej, E. Firu, T. Fiutowski, J. Fuster, M. Gabriel, F. Gaede, I. García, V. Ghenescu, J. Goldstein, S. Green, C. Grefe, M. Hauschild, C. Hawkes, D. Hynds, M. Idzik, G. Kačarević, J. Kalinowski, S. Kananov, W. Klempt, M. Kopec, M. Krawczyk, B. Krupa, M. Kucharczyk, S. Kulis, T. Laštovička, T. Lesiak, A. Levy, I. Levy, L. Linssen, S. Lukić, A. A. Maier, V. Makarenko, J. S. Marshall, K. Mei, G. Milutinović-Dumbelović, J. Moroń, A. Moszczyński, D. Moya, R. M. Münker, A. Münnich, A. T. Neagu, N. Nikiforou, K. Nikolopoulos, A. Nürnberg, M. Pandurović, B. Pawlik, E. Perez Codina, I. Peric, M. Petric, F. Pitters, S. G. Poss, T. Preda, D. Protopopescu, R. Rassool, S. Redford, J. Repond, A. Robson, P. Roloff, E. Ros, O. Rosenblat, A. Ruiz-Jimeno, A. Sailer, D. Schlatter, D. Schulte, N. Shumeiko, E. Sicking, F. Simon, R. Simoniello, P. Sopicki, S. Stapnes, R. Ström, J. Strube, K. P. Świentek, M. Szalay, M. Tesař, M. A. Thomson, J. Trenado, U. I. Uggerhøj, N. van der Kolk, E. van der Kraaij, M. Vicente Barreto Pinto, I. Vila, M. Vogel Gonzalez, M. Vos, J. Vossebeld, M. Watson, N. Watson, M. A. Weber, H. Weerts, J. D. Wells, L. Weuste, A. Winter, T. Wojtoń, L. Xia, B. Xu, A. F. Żarnecki, L. Zawiejski, I. -S. Zgura

The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. Read More

2016Aug
Authors: The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the non-linear nature of the process. Read More

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. Read More

2015Nov

This report describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability --- a key to an early realization of the concept. Read More

2013Jul
Authors: Halina Abramowicz, Angel Abusleme, Konstatin Afanaciev, Gideon Alexander, Niloufar Alipour Tehrani, Oscar Alonso, Kristoffer K. Andersen, Samir Arfaoui, Csaba Balazs, Tim Barklow, Marco Battaglia, Mathieu Benoit, Burak Bilki, Jean-Jacques Blaising, Mark Boland, Marça Boronat, Ivanka Božović Jelisavčić, Philip Burrows, Maximilien Chefdeville, Roberto Contino, Dominik Dannheim, Marcel Demarteau, Marco Aurelio Diaz Gutierrez, Angel Diéguez, Jorge Duarte Campderros, Gerald Eigen, Konrad Elsener, Dan Feldman, Uli Felzmann, Mirosław Firlej, Elena Firu, Tomasz Fiutowski, Kurt Francis, Frank Gaede, Ignacio García García, Veta Ghenescu, Gian Giudice, Norman Graf, Christian Grefe, Christophe Grojean, Rick S. Gupta, Michael Hauschild, Helga Holmestad, Marek Idzik, Christian Joram, Sergey Kananov, Yannis Karyotakis, Martin Killenberg, Wolfgang Klempt, Sabine Kraml, Beata Krupa, Szymon Kulis, Tomáš Laštovička, Greg LeBlanc, Aharon Levy, Itamar Levy, Lucie Linssen, Angela Lucaci Timoce, Strahinja Lukić, Vladimir Makarenko, John Marshall, Victoria Martin, Rune E. Mikkelsen, Gordana Milutinović-Dumbelović, Akiya Miyamoto, Klaus Mönig, Gudrid Moortgat-Pick, Jakub Moroń, Astrid Münnich, Alina Neagu, Mila Pandurović, Duccio Pappadopulo, Bogdan Pawlik, Werner Porod, Stéphane Poss, Titi Preda, Roger Rassool, Ricardo Rattazzi, Sophie Redford, Jose Repond, Sabine Riemann, Aidan Robson, Philipp Roloff, Eduardo Ros, Jonatan Rosten, Alberto Ruiz-Jimeno, Heidi Rzehak, André Sailer, Dieter Schlatter, Daniel Schulte, Felix Sefkow, Katja Seidel, Nikolai Shumeiko, Eva Sicking, Frank Simon, Jacob Smith, Christian Soldner, Steinar Stapnes, Jan Strube, Taikan Suehara, Krzysztof Świentek, Marco Szalay, Tomohiko Tanabe, Michal Tesař, Andrea Thamm, Mark Thomson, Juan Trenado Garcia, Ulrik I. Uggerhøj, Erik van der Kraaij, Iván Vila, Eva Vilella, Miguel Angel Villarejo, Marcelo Alonso Vogel Gonzalez, Marcel Vos, Nigel Watson, Harry Weerts, James D. Wells, Lars Weuste, Tobias N. Wistisen, Kent Wootton, Lei Xia, Leszek Zawiejski, Ion-Sorin Zgura

This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process. Read More

2013Jun
Affiliations: 1SLAC, 2Fermilab, 3Caltech, 4DESY, 5University of Oxford, Particle Physics Department, 6ANL, 7Fermilab, 8CERN, 9Cornell University, 10DESY, 11KEK, 12DESY, 13KEK, 14ANL, 15CERN, 16Jefferson Lab, 17Fermilab, 18LNF, 19BNL, 20KEK, 21CERN, 22KEK, 23Fermilab, 24DESY, 25ANL, 26KEK, 27SLAC, 28CERN, 29Fermilab, 30SLAC, 31Fermilab, 32SLAC, 33INFN, Laboratorio LASA, 34SLAC, 35Cornell University, 36University of Oxford, 37SLAC, 38Fermilab, 39CERN, 40KEK, 41KEK, 42DESY, 43KEK, 44KEK

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

2013Jun
Affiliations: 1DESY, 2University of Oregon, Department of Physics, 3University of Oxford, Particle Physics Department, 4IFIC, 5SLAC, 6DESY, 7KEK, 8KEK, 9Tohoku University, Department of Physics

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

2013Jun
Affiliations: 1SLAC, 2Fermilab, 3Caltech, 4DESY, 5University of Oxford, Particle Physics Department, 6ANL, 7Fermilab, 8CERN, 9Cornell University, 10DESY, 11KEK, 12DESY, 13KEK, 14ANL, 15CERN, 16Jefferson Lab, 17Fermilab, 18LNF, 19BNL, 20KEK, 21CERN, 22KEK, 23Fermilab, 24DESY, 25ANL, 26KEK, 27SLAC, 28CERN, 29Fermilab, 30SLAC, 31Fermilab, 32SLAC, 33INFN, Laboratorio LASA, 34SLAC, 35Cornell University, 36University of Oxford, 37SLAC, 38Fermilab, 39CERN, 40KEK, 41KEK, 42DESY, 43KEK, 44KEK

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

2012Jul
Affiliations: 1Orsay and KEK, Tsukuba, 2Valencia U., IFIC, 3SLAC, 4Daresbury, 5Oxford U., JAI, 6KEK, Tsukuba, 7KEK, Tsukuba, 8Beijing, Inst. High Energy Phys., 9SLAC, 10Oxford U., JAI, 11Royal Holloway, U. of London, 12Savoie U., 13Royal Holloway, U. of London, 14Royal Holloway, U. of London, 15Oxford U., JAI, 16Oxford U., JAI, 17Oxford U., JAI, 18Oxford U., JAI, 19CERN, 20Royal Holloway, U. of London, 21DESY, 22Valencia U., IFIC, 23KEK, Tsukuba, 24Beijing, Inst. High Energy Phys., 25Savoie U., 26Fermilab, 27Ecole Polytechnique, 28KEK, Tsukuba, 29Kyungpook Natl. U., 30KEK, Tsukuba, 31Pohang Accelerator Lab., 32Pohang Accelerator Lab., 33Kyoto U., Inst. Chem. Res., 34Savoie U., 35Daresbury, 36Tokyo U., 37Royal Holloway, U. of London, 38Kyungpook Natl. U., 39Kyungpook Natl. U., 40Pohang Accelerator Lab., 41Tokyo U., 42KEK, Tsukuba, 43KEK, Tsukuba, 44KEK, Tsukuba, 45SLAC, 46University Coll. London, 47KEK, Tsukuba, 48SLAC, 49Royal Holloway, U. of London, 50KEK, Tsukuba, 51Tokyo U., 52SLAC, 53Tohoku U., 54KEK, Tsukuba, 55Tokyo U., 56Pohang Accelerator Lab., 57Brookhaven, 58SLAC, 59Oxford U., JAI, 60SLAC, 61SLAC, 62Orsay and KEK, Tsukuba, 63Oxford U., JAI, 64Orsay, 65Fermilab, 66Tohoku U., 67Manchester U., 68CERN, 69SLAC, 70SLAC, 71Tokyo U., 72KEK, Tsukuba, 73Oxford U., JAI, 74Hiroshima U., 75KEK, Tsukuba, 76KEK, Tsukuba, 77CERN, 78KEK, Tsukuba, 79Oxford U., JAI, 80Ecole Polytechnique, 81SLAC, 82Oxford U., JAI, 83Fermilab, 84SLAC, 85SLAC, 86Liverpool U., 87SLAC, 88Tokyo U., 89Tokyo U., 90SLAC, 91Tokyo U., 92KEK, Tsukuba, 93SLAC, 94CERN

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U. Read More

2009Oct

Letter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider. Read More

We present the design and preliminary results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a latency of approximately 140 ns. Read More

The design luminosity for the future linear colliders is very demanding and challenging. Beam-based feedback systems will be required to achieve the necessary beam-beam stability and steer the two beams into collision. In particular we have studied the luminosity performance improvement by intra-train beam-based feedback systems for position and angle corrections at the interaction point. Read More

2005May
Affiliations: 1SLAC, 2SLAC, 3SLAC, 4SLAC, 5SLAC, 6SLAC, 7SLAC, 8SLAC, 9SLAC, 10SLAC, 11SLAC, 12SLAC, 13SLAC, 14SLAC, 15SLAC, 16SLAC, 17SLAC, 18SLAC, 19SLAC, 20CCLRC, 21CCLRC, 22CCLRC, 23CCLRC, 24CCLRC, 25CCLRC, 26CERN, 27DESY, 28KEK, 29LLNL, 30Lancaster U., 31Lancaster U., 32Lancaster U., 33Lancaster U., 34Lancaster U., 35Manchester U., 36Manchester U., 37Manchester U., 38Notre Dame U., 39QMUL, London, 40QMUL, London, 41QMUL, London, 42QMUL, London, 43QMUL, London, 44QMUL, London, 45TEMF TU Darmstadt, 46TEMF TU Darmstadt, 47U. of Birmingham, 48U. of Bristol, 49U. of Bristol, 50U. of California, Berkeley, 51U. of Cambridge, 52U. of Cambridge, 53U. of Cambridge, 54UCL, London, 55UCL, London, 56UCL, London, 57UCL, London, 58UCL, London, 59U. of Massachusetts, Amherst, 60U. of Oregon, 61U. of Oregon

The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. Read More

We report on Discussion Question 4, in Sub-group 1 (`TeV-class') of the Snowmass Working Group E3: `Experimental Approaches: Linear Colliders', which addresses the energy expandability of a linear collider. We first synthesize discussions of the energy reach of the hardware of the 500 GeV designs for TESLA and NLC/JLC. Next, we review plans for increasing the energy to 800-1000 GeV. Read More

I summarise the status of the LCFI Collaboration R&D programme for a CCD-based vertex detector for the linear collider. Read More

I summarise the QCD programme at the high-energy linear e+e- collider, as reported in the TESLA TDR and Linear Collider Physics Resource Book. Read More

I summarise the R&D programme on a nanosecond-timescale fast-feedback system for luminosity optimisation at the linear collider Read More

2001Jun
Authors: R. -D. Heuer, D. J. Miller, F. Richard, P. M. Zerwas, J. A. Aguilar-Saavedra, J. Alcaraz, A. Ali, S. Ambrosanio, A. Andreazza, J. Andruszkow, B. Badelek, A. Ballestrero, T. Barklow, A. Bartl, M. Battaglia, T. Behnke, G. Belanger, D. Benson, M. Berggren, W. Bernreuther, M. Besancon, J. Biebel, O. Biebel, I. Bigi, J. J. van der Bij, T. Binoth, G. A. Blair, C. Blochinger, J. Blumlein, M. Boonekamp, E. Boos, G. Borissov, A. Brandenburg, J. -C. Brient, G. Bruni, K. Busser, P. Burrows, R. Casalbuoni, C. Castanier, P. Chankowski, A. Chekanov, R. Chierici, S. Y. Choi, P. Christova, P. Ciafaloni, D. Comelli, G. Conteras, M. Danilov, W. Da Silva, A. Deandrea, W. de Boer, S. De Curtis, S. J. De Jong, A. Denner, A. De Roeck, K. Desch, E. De Wolf, S. Dittmaier, V. Djordjadze, A. Djouadi, D. Dominici, M. Doncheski, M. T. Dova, V. Drollinger, H. Eberl, J. Erler, A. Eskreys, J. R. Espinosa, N. Evanson, E. Fernandez, J. Forshaw, H. Fraas, F. Franke, A. Freitas, F. Gangemi, P. Garcia-Abia, R. Gatto, P. Gay, T. Gehrmann, A. Gehrmann-De Ridder, U. Gensch, N. Ghodbane, I. F. Ginzburg, R. Godbole, S. Godfrey, G. Gounaris, M. Grazzini, E. Gross, B. Grzadkowski, J. Guasch, J. F. Gunion, K. Hagiwara, T. Han, K. Harder, R. Harlander, R. Hawkings, S. Heinemeyer, S. Hesselbach, C. A. Heusch, J. Hewett, G. Hiller, A. Hoang, W. Hollik, J. I. Illana, V. A. Ilyin, D. Indumathi, S. Ishihara, M. Jack, S. Jadach, F. Jegerlehner, M. Jezabek, G. Jikia, L. Jonsson, P. Jankowski, P. Jurkiewicz, A. Juste, A. Kagan, J. Kalinowski, M. Kalmykov, P. Kalyniak, B. Kamal, J. Kamoshita, S. Kanemura, F. Kapusta, S. Katsanevas, R. Keranen, V. Khoze, A. Kiiskinen, W. Kilian, M. Klasen, J. L. Kneur, B. A. Kniehl, M. Kobel, K. Kolodziej, M. Kramer, S. Kraml, M. Krawczyk, J. H. Kuhn, J. Kwiecinski, P. Laurelli, A. Leike, J. Letts, W. Lohmann, S. Lola, P. Lutz, P. Mattig, W. Majerotto, T. Mannel, M. Martinez, H. -U. Martyn, T. Mayer, B. Mele, M. Melles, W. Menges, G. Merino, N. Meyer, D. J. Miller, P. Minkowski, R. Miquel, K. Monig, G. Montagna, G. Moortgat-Pick, P. Mora de Freitas, G. Moreau, M. Moretti, S. Moretti, L. Motyka, G. Moultaka, M. Muhlleitner, U. Nauenberg, R. Nisius, H. Nowak, T. Ohl, R. Orava, J. Orloff, P. Osland, G. Pancheri, A. A. Pankov, C. Papadopoulos, N. Paver, D. Peralta, H. T. Phillips, F. Picinini, W. Placzek, M. Pohl, W. Porod, A. Pukhov, A. Raspereza, D. Reid, S. Riemann, T. Riemann, S. Rosati, M. Roth, S. Roth, C. Royon, R. Ruckl, E. Ruiz-Morales, M. Sachwitz, J. Schieck, H. -J. Schreiber, D. Schulte, M. Schumacher, R. D. Settles, M. Seymour, R. Shanidze, T. Sjostrand, M. Skrzypek, S. Soldner-Rembold, A. Sopczak, H. Spiesberger, M. Spira, H. Steiner, M. Stratmann, Y. Sumino, S. Tapprogge, V. Telnov, T. Teubner, A. Tonazzo, C. Troncon, O. Veretin, C. Verzegnassi, A. Vest, A. Vicini, H. Videau, W. Vogelsang, A. Vogt, H. Vogt, D. Wackeroth, A. Wagner, S. Wallon, G. Weiglein, S. Weinzierl, T. Wengler, N. Wermes, A. Werthenbach, G. Wilson, M. Winter, A. F. Zarnecki, B. Ziaja, J. Zochowski

The TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider Read More

2000Nov
Authors: P. N. Burrows1
Affiliations: 1for the SLD Collaboration

The latest SLD results on light-quark fragmentation and tests of hadronisation models are presented Read More

1999Nov

The unique SLD CCD vertex detector combined with the highly-polarised electron beam allow us to search for an anomalous chromomagnetic coupling of the b-quark, as well as P-odd, T_N-odd and CP-odd processes at the b bbar g vertex. Read More

The status of the design of a detector for the TESLA collider is presented. Read More

A summary is presented of the key strong-interaction measurements that could be made at a high-energy, high-luminosity e+e- collider Read More

1999Aug

I present a summary of the experience with CCD-based vertex detectors at the SLD experiment at SLAC, and discuss their advantages for use at a future high-energy e+e- collider. The extensive R+D programme to improve further the vertexing capabilities of CCD detectors is also outlined. Read More

We have studied the determination of the running b-quark mass, $m_b(M_Z)$, using $Z^0$ decays into 3 or more hadronic jets. We calculated the ratio of $\geq3$-jet fractions in $e^+e^-\to b\bar{b}$ vs. $e^+e^-\to q_l\bar{q_l}$ ($q_l$ = u or d or s) events at next-to-leading order in perturbative QCD using six different infra-red- and collinear-safe jet-finding algorithms. Read More

A review is given of latest results on tests of the flavour independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios alpha_s^b/alpha_s^uds and alpha_s^c/alpha_s^uds are found to be consistent with unity. Read More

We review the orientation of e+e- \to q\bar q g events in terms of the polar and azimuthal angles of the event plane w.r.t. Read More

Measurements of alpha_s from e+e- annihilation experiments are reviewed and compared with measurements from other processes. Highlights are presented of recent QCD studies in e+e- annihilation at the Z0 resonance. Read More

A pedagogical review is given of precise tests of QCD in electron-positron annihilation. Emphasis is placed on measurements that have served to establish QCD as the correct theory of strong interactions, as well as measurements of the coupling parameter alpha-s. An outlook is given for future important tests at a high energy e+e- collider. Read More

We discuss the orientation of e+e- -> q qbar g events in terms of the polar and azimuthal angles of the event plane w.r.t. Read More

1996Dec
Affiliations: 1MIT, 2SLAC, 3University of Illinois, Urbana, 4University of California, Riverside, 5Fermilab, 6University of Rochester, 7Columbia University, 8University of California, Santa Cruz

The prospects for the measurement of the strong coupling constant alpha_msbar(M_Z) to a relative uncertainty of 1% are discussed. Particular emphasis is placed on the implications relating to future High Energy Physics facilities. Read More

Determinations of alpha_s are reviewed. Current results are limited to a precision of around 3-20%, largely by theoretical uncertainties. All measurements are consistent with a `world average' value of 0. Read More

The determination of alpha_s(M_Z^2) using O(alpha_s^2) calculations of hadronic event observables in e+e- annihilation is reviewed. The large scatter among alpha_s(M_Z^2) values determined from different observables may be interpreted as arising from the effect of uncalculated higher-order contributions. The application of `optimised' perturbation theory and Pade approximants in an attempt to reduce this effect is discussed. Read More

1996Dec

Despite many experimental verifications of the correctness of our basic understanding of QCD, there remain numerous open questions in strong interaction physics and we focus on the role of future colliders in addressing these questions. We discuss possible advances in the measurement of $\alpha_s$, in the study of parton distribution functions, and in the understanding of low $x$ physics at present colliders and potential new facilities. We also touch briefly on the role of spin physics in advancing our understanding of QCD. Read More

We have applied Pade approximants to perturbative QCD calculations of event shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2) prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for 15 observables, and in each case determined alpha_s(M_Z^2) from comparison with hadronic Z^0 decay data from the SLD experiment. We found the scatter among the alpha_s(M_Z^2) values to be significantly reduced compared with the standard O(alpha_s^2) determination, implying that the Pade method provides at least a partial approximation of higher-order perturbative contributions to event shape observables. Read More

We have applied so-called `optimised' perturbation theory to resolve the renormalisation-scale (mu) ambiguity of exact O(alpha_s^2) QCD calculations of event shape observables in e+e- --> hadrons. We fitted the optimised predictions for 15 observables to hadronic Z0 decay data from the SLD experiment to determine alpha_s(M_Z^2). Comparing with results using the physical scale mu = M_Z we found no reduction in the scatter among alpha_s(M_Z^2) values from the 15 observables, implying that the O(alpha_s^2) predictions with optimised scales are numerically no closer to the exact all-orders results than those with the physical scale. Read More