P. Bertin - Universite blaise pascal, Clermont-Ferrand, France

P. Bertin
Are you P. Bertin?

Claim your profile, edit publications, add additional information:

Contact Details

Name
P. Bertin
Affiliation
Universite blaise pascal, Clermont-Ferrand, France
City
Clermont-Ferrand
Country
France

Pubs By Year

Pub Categories

 
Nuclear Experiment (11)
 
High Energy Physics - Experiment (7)
 
High Energy Physics - Phenomenology (2)
 
Physics - Instrumentation and Detectors (1)
 
Mathematics - Probability (1)
 
Physics - Data Analysis; Statistics and Probability (1)

Publications Authored By P. Bertin

The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. Read More

2017Feb
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0. Read More

We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. Read More

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Read More

2014May
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Read More

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

We study the free energy of the Parabolic Anderson Model, a time-continuous model of directed polymers in random environment. We prove that in dimension 1 and 2, the free energy is always negative, meaning that very strong disorder always holds. The result for discrete polymers in dimension two, as well as better bounds on the free energy on dimension 1, were first obtained by Hubert Lacoin, and the goal of this paper is to adapt his proof to the Anderson Parabolic Model. Read More

2012Aug
Authors: The HAPPEX, PREX Collaborations, :, S. Abrahamyan, A. Acha, A. Afanasev, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, J. Arrington, T. Averett, B. Babineau, S. L. Bailey, J. Barber, A. Barbieri, A. Beck, V. Bellini, R. Beminiwattha, H. Benaoum, J. Benesch, F. Benmokhtar, P. Bertin, T. Bielarski, W. Boeglin, P. Bosted, F. Butaru, E. Burtin, J. Cahoon, A. Camsonne, M. Canan, P. Carter, C. C. Chang, G. D. Cates, Y. C. Chao, C. Chen, J. P. Chen, Seonho Choi, E. Chudakov, E. Cisbani, B. Craver, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, D. Deepa, X. Deng, A. Deur, D. Dutta, A. Etile, C. Ferdi, R. J. Feuerbach, J. M. Finn, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, S. A. Fuchs, K. Fuoti, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, L. E. Glesener, J. Gomez, M. Gorchtein, J. Grames, K. Grimm, C. Gu, O. Hansen, J. Hansknecht, O. Hen, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, T. B. Humensky, C. E. Hyde, H. Ibrahim, F. Itard, C. M. Jen, E. Jensen, X. Jiang, G. Jin, S. Johnston, J. Katich, L. J. Kaufman, A. Kelleher, K. Kliakhandler, P. M. King, A. Kolarkar, S. Kowalski, E. Kuchina, K. S. Kumar, L. Lagamba, D. Lambert, P. LaViolette, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, M. Mazouz, K. McCormick, A. McCreary, D. McNulty, D. G. Meekins, L. Mercado, Z. E. Meziani, R. W. Michaels, M. Mihovilovic, B. Moffit, P. Monaghan, N. Muangma, C. Munoz-Camacho, S. Nanda, V. Nelyubin, D. Neyret, Nuruzzaman, Y. Oh, K. Otis, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, M. Poelker, R. Pomatsalyuk, M. Posik, M. Potokar, K. Prok, A. J. R. Puckett, X. Qian, Y. Qiang, B. Quinn, A. Rakhman, P. E. Reimer, B. Reitz, S. Riordan, J. Roche, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, M. L. Stutzman, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, P. Ulmer, A. Vacheret, E. Voutier, B. Waidyawansa, D. Wang, K. Wang, J. Wexler, A. Whitbeck, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, V. Ziskin, P. Zhu

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. Read More

2012May
Authors: H. Fonvieille1, G. Laveissiere2, N. Degrande3, S. Jaminion4, C. Jutier5, L. Todor6, R. Di Salvo7, L. Van Hoorebeke8, L. C. Alexa9, B. D. Anderson10, K. A. Aniol11, K. Arundell12, G. Audit13, L. Auerbach14, F. T. Baker15, M. Baylac16, J. Berthot17, P. Y. Bertin18, W. Bertozzi19, L. Bimbot20, W. U. Boeglin21, E. J. Brash22, V. Breton23, H. Breuer24, E. Burtin25, J. R. Calarco26, L. S. Cardman27, C. Cavata28, C. -C. Chang29, J. -P. Chen30, E. Chudakov31, E. Cisbani32, D. S. Dale33, C. W. deJager34, R. De Leo35, A. Deur36, N. d'Hose37, G. E. Dodge38, J. J. Domingo39, L. Elouadrhiri40, M. B. Epstein41, L. A. Ewell42, J. M. Finn43, K. G. Fissum44, G. Fournier45, B. Frois46, S. Frullani47, C. Furget48, H. Gao49, J. Gao50, F. Garibaldi51, A. Gasparian52, S. Gilad53, R. Gilman54, A. Glamazdin55, C. Glashausser56, J. Gomez57, V. Gorbenko58, P. Grenier59, P. A. M. Guichon60, J. O. Hansen61, R. Holmes62, M. Holtrop63, C. Howell64, G. M. Huber65, C. E. Hyde66, S. Incerti67, M. Iodice68, J. Jardillier69, M. K. Jones70, W. Kahl71, S. Kato72, A. T. Katramatou73, J. J. Kelly74, S. Kerhoas75, A. Ketikyan76, M. Khayat77, K. Kino78, S. Kox79, L. H. Kramer80, K. S. Kumar81, G. Kumbartzki82, M. Kuss83, A. Leone84, J. J. LeRose85, M. Liang86, R. A. Lindgren87, N. Liyanage88, G. J. Lolos89, R. W. Lourie90, R. Madey91, K. Maeda92, S. Malov93, D. M. Manley94, C. Marchand95, D. Marchand96, D. J. Margaziotis97, P. Markowitz98, J. Marroncle99, J. Martino100, K. McCormick101, J. McIntyre102, S. Mehrabyan103, F. Merchez104, Z. E. Meziani105, R. Michaels106, G. W. Miller107, J. Y. Mougey108, S. K. Nanda109, D. Neyret110, E. A. J. M. Offermann111, Z. Papandreou112, B. Pasquini113, C. F. Perdrisat114, R. Perrino115, G. G. Petratos116, S. Platchkov117, R. Pomatsalyuk118, D. L. Prout119, V. A. Punjabi120, T. Pussieux121, G. Quemener122, R. D. Ransome123, O. Ravel124, J. S. Real125, F. Renard126, Y. Roblin127, D. Rowntree128, G. Rutledge129, P. M. Rutt130, A. Saha131, T. Saito132, A. J. Sarty133, A. Serdarevic134, T. Smith135, G. Smirnov136, K. Soldi137, P. Sorokin138, P. A. Souder139, R. Suleiman140, J. A. Templon141, T. Terasawa142, R. Tieulent143, E. Tomasi-Gustaffson144, H. Tsubota145, H. Ueno146, P. E. Ulmer147, G. M. Urciuoli148, M. Vanderhaeghen149, R. L. J. Van der Meer150, R. Van De Vyver151, P. Vernin152, B. Vlahovic153, H. Voskanyan154, E. Voutier155, J. W. Watson156, L. B. Weinstein157, K. Wijesooriya158, R. Wilson159, B. B. Wojtsekhowski160, D. G. Zainea161, W. -M. Zhang162, J. Zhao163, Z. -L. Zhou164
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration, 99The Jefferson Lab Hall A Collaboration, 100The Jefferson Lab Hall A Collaboration, 101The Jefferson Lab Hall A Collaboration, 102The Jefferson Lab Hall A Collaboration, 103The Jefferson Lab Hall A Collaboration, 104The Jefferson Lab Hall A Collaboration, 105The Jefferson Lab Hall A Collaboration, 106The Jefferson Lab Hall A Collaboration, 107The Jefferson Lab Hall A Collaboration, 108The Jefferson Lab Hall A Collaboration, 109The Jefferson Lab Hall A Collaboration, 110The Jefferson Lab Hall A Collaboration, 111The Jefferson Lab Hall A Collaboration, 112The Jefferson Lab Hall A Collaboration, 113The Jefferson Lab Hall A Collaboration, 114The Jefferson Lab Hall A Collaboration, 115The Jefferson Lab Hall A Collaboration, 116The Jefferson Lab Hall A Collaboration, 117The Jefferson Lab Hall A Collaboration, 118The Jefferson Lab Hall A Collaboration, 119The Jefferson Lab Hall A Collaboration, 120The Jefferson Lab Hall A Collaboration, 121The Jefferson Lab Hall A Collaboration, 122The Jefferson Lab Hall A Collaboration, 123The Jefferson Lab Hall A Collaboration, 124The Jefferson Lab Hall A Collaboration, 125The Jefferson Lab Hall A Collaboration, 126The Jefferson Lab Hall A Collaboration, 127The Jefferson Lab Hall A Collaboration, 128The Jefferson Lab Hall A Collaboration, 129The Jefferson Lab Hall A Collaboration, 130The Jefferson Lab Hall A Collaboration, 131The Jefferson Lab Hall A Collaboration, 132The Jefferson Lab Hall A Collaboration, 133The Jefferson Lab Hall A Collaboration, 134The Jefferson Lab Hall A Collaboration, 135The Jefferson Lab Hall A Collaboration, 136The Jefferson Lab Hall A Collaboration, 137The Jefferson Lab Hall A Collaboration, 138The Jefferson Lab Hall A Collaboration, 139The Jefferson Lab Hall A Collaboration, 140The Jefferson Lab Hall A Collaboration, 141The Jefferson Lab Hall A Collaboration, 142The Jefferson Lab Hall A Collaboration, 143The Jefferson Lab Hall A Collaboration, 144The Jefferson Lab Hall A Collaboration, 145The Jefferson Lab Hall A Collaboration, 146The Jefferson Lab Hall A Collaboration, 147The Jefferson Lab Hall A Collaboration, 148The Jefferson Lab Hall A Collaboration, 149The Jefferson Lab Hall A Collaboration, 150The Jefferson Lab Hall A Collaboration, 151The Jefferson Lab Hall A Collaboration, 152The Jefferson Lab Hall A Collaboration, 153The Jefferson Lab Hall A Collaboration, 154The Jefferson Lab Hall A Collaboration, 155The Jefferson Lab Hall A Collaboration, 156The Jefferson Lab Hall A Collaboration, 157The Jefferson Lab Hall A Collaboration, 158The Jefferson Lab Hall A Collaboration, 159The Jefferson Lab Hall A Collaboration, 160The Jefferson Lab Hall A Collaboration, 161The Jefferson Lab Hall A Collaboration, 162The Jefferson Lab Hall A Collaboration, 163The Jefferson Lab Hall A Collaboration, 164The Jefferson Lab Hall A Collaboration

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1. Read More

An experimental study of the 16O(e,e'K^+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K^+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. Read More

We present a measurement of the spin-dependent cross sections for the \vec{^3He}(\vec{e},e')X} reaction in the quasielastic and resonance regions at four-momentum transfer 0.1 < Q^2< 0.9 GeV^2. Read More

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Read More

This paper describes the Monte Carlo simulation developed specifically for the VCS experiments below pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe-Heitler + Born) cross section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the `effective' solid angle for the various experimental settings which are used for the precise determination of photon electroproduction absolute cross section. Read More

A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6 GeV and a beam current of 40 uA, a total relative uncertainty of 1. Read More

2002Mar
Affiliations: 1CEA Saclay, DSM/DAPNIA/SPhN, 2CEA Saclay, DSM/DAPNIA/SPhN, 3CEA Saclay, DSM/DAPNIA/SPhN, 4CEA Saclay, DSM/DAPNIA/SPhN, 5CEA Saclay, DSM/DAPNIA/SPhN, 6CEA Saclay, DSM/DAPNIA/SPhN, 7CEA Saclay, DSM/DAPNIA/SPhN, 8CEA Saclay, DSM/DAPNIA/SPhN, 9CEA Saclay, DSM/DAPNIA/SPhN, 10CEA Saclay, DSM/DAPNIA/SPhN, 11Universite Blaise Pascal et CNRS-IN2P3, 12Jefferson Lab, 13Jefferson Lab

A Compton polarimeter has been installed in Hall A at Jefferson Laboratory. This letter reports on the first electron beam polarization measurements performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an average current of 40 $\mu$A. Read More

1999Oct
Affiliations: 1Universite blaise pascal, Clermont-Ferrand, France, 2Universite blaise pascal, Clermont-Ferrand, France, 3Old Dominion University, Norfolk, VA, USA

We discuss the experimental issues confronting measurements of the Virtual Compton Scattering (VCS) reaction ep->ep gamma with electron beam energies 6-30 GeV. We specifically address the kinematics of Deeply Virtual Compton Scattering (Deep Inelastic Scattering, with coincident detection of the exclusive real photon nearly parallel to the virtual photon direction) and large transverse momentum VCS (High energy VCS of arbitrary Q**2, and the recoil proton emitted with high momentum transverse to the virtual photon direction). We discuss the experimental equipment necessary for these measurements. Read More