Onno R. Pols - Sterrenkundig Instituut, Universiteit Utrecht

Onno R. Pols
Are you Onno R. Pols?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Onno R. Pols
Affiliation
Sterrenkundig Instituut, Universiteit Utrecht
City
Utrecht
Country
Netherlands

Pubs By Year

Pub Categories

 
Astrophysics (9)
 
Solar and Stellar Astrophysics (7)
 
Astrophysics of Galaxies (4)
 
High Energy Astrophysical Phenomena (2)
 
General Relativity and Quantum Cosmology (1)
 
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By Onno R. Pols

The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z~2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. Read More

The X-ray source HLX-1 near the spiral galaxy ESO 243-49 is currently the best intermediate-mass black hole candidate. It has a peak bolometric luminosity of $10^{42}$ erg s$^{-1}$, which implies a mass inflow rate of $\sim10^{-4}$ MSun yr$^{-1}$, but the origin of this mass is unknown. It has been proposed that there is a star on an eccentric orbit around the black hole which transfers mass at pericentre. Read More

Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~ 3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. Read More

CEMP-s stars are very metal-poor stars with enhanced abundances of carbon and s-process elements. They form a significant proportion of the very metal-poor stars in the Galactic halo and are mostly observed in binary systems. This suggests that the observed chemical anomalies are due to mass accretion in the past from an asymptotic giant branch (AGB) star. Read More

In young dense clusters repeated collisions between massive stars may lead to the formation of a very massive star (above 100 Msun). In the past the study of the long-term evolution of merger remnants has mostly focussed on collisions between low-mass stars (up to about 2 Msun) in the context of blue-straggler formation. The evolution of collision products of more massive stars has not been as thoroughly investigated. Read More

Globular clusters contain many stars with surface abundance patterns indicating contributions from hydrogen burning products, as seen in the anti-correlated elemental abundances of e.g. sodium and oxygen, and magnesium and aluminium. Read More

Hierarchical triple systems are common among field stars yet their long-term evolution is poorly understood theoretically. In such systems Kozai cycles can be induced in the inner binary system during which the inner orbit eccentricity and the inclination between both binary orbits vary periodically. These cycles, combined with tidal friction and gravitational wave emission, can significantly affect the inner binary evolution. Read More

Most carbon-enhanced metal-poor (CEMP) stars are thought to result from past mass transfer of He-burning material from an asymptotic giant branch (AGB) star to a low-mass companion star, which we now observe as a CEMP star. Because AGB stars of intermediate mass efficiently cycle carbon into nitrogen in their envelopes, the same evolution scenario predicts the existence of a population of nitrogen-enhanced metal-poor (NEMP) stars, with [N/Fe] > 1 and [N/C] > 0.5. Read More

2009Oct
Affiliations: 1Sterrenkundig Instituut, Universiteit Utrecht, 2Sterrenkundig Instituut, Universiteit Utrecht, 3Institute of Astronomy, University of Cambridge, 4Sterrenkundig Instituut, Universiteit Utrecht

The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich material from a thermally-pulsing asymptotic giant branch (TPAGB) primary star to a less massive main-sequence companion which is seen today. Recent studies explore the possibility that an initial mass function biased toward intermediate-mass stars is required to reproduce the observed CEMP fraction in stars with metallicity [Fe/H] < -2. Read More

2009Sep
Affiliations: 1Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, 2Sterrenkundig Instituut, Universiteit Utrecht, 3School of Mathematical Sciences, Monash University, 4Sterrenkundig Instituut, Universiteit Utrecht

We construct binary-star population nucleosynthesis models of carbon-enhanced metal poor (CEMP) stars. We compare the CEMP to EMP (extremely metal poor) ratio of our models to the observed ratio and find it is an order of magnitude too small. Through an increase in the efficiency of third dredge-up in low-mass, low-metallicity thermally-pulsing asymptotic-giant branch (TPAGB) stars our models better match the observations. Read More

2007Feb
Affiliations: 1IoA, Cambridge, 2Sterrekundig Instituut Utrecht, 3Sterrekundig Instituut Utrecht, 4Sterrekundig Instituut Utrecht
Category: Astrophysics

One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until first dredge-up. However, thermohaline mixing should mix the accreted material with the original stellar material as it has a higher mean molecular weight. Read More

The old open cluster M67 is an ideal testbed for current cluster evolution models because of its dynamically evolved structure and rich stellar populations that show clear signs of interaction between stellar, binary and cluster evolution. Here we present the first truly direct N-body model for M67, evolved from zero age to 4 Gyr taking full account of cluster dynamics as well as stellar and binary evolution. Our preferred model starts with 12000 single stars and 12000 binaries placed in a Galactic tidal field at 8. Read More

The post-Asymptotic Giant Branch (AGB) star HR4049 is in an eccentric binary system with a relatively short period probably surrounded by a dusty circumbinary disk. Extremely anomalous oxygen isotopic ratios, O16/O17 ~ O16/O18 ~ 7, have been measured from CO_2 molecules likely residing in the disk. Such a composition cannot be explained in the framework of AGB and post-AGB evolution while it can be qualitatively associated with the nucleosynthesis occurring during nova outbursts. Read More

We summarize the main results from MODEST-1, the first workshop on MOdeling DEnse STellar systems. Our goal is to go beyond traditional population synthesis models, by introducing dynamical interactions between single stars, binaries, and multiple systems. The challenge is to define and develop a software framework to enable us to combine in one simulation existing computer codes in stellar evolution, stellar dynamics, and stellar hydrodynamics. Read More

Recently the observationally derived stellar-wind mass-loss rates for Wolf-Rayet stars, or massive naked helium stars, have been revised downwards by a substantial amount. We present evolutionary calculations of helium stars incorporating such revised mass-loss rates, as well as mass transfer to a close compact binary companion. Our models reach final masses well in excess of 10 Msun, consistent with the observed masses of black holes in X-ray binaries. Read More

We present a rapid binary evolution algorithm that enables modelling of even the most complex binary systems. In addition to all aspects of single star evolution, features such as mass transfer, mass accretion, common-envelope evolution, collisions, supernova kicks and angular momentum loss mechanisms are included. In particular, circularization and synchronization of the orbit by tidal interactions are calculated for convective, radiative and degenerate damping mechanisms. Read More

The progenitors of Type Ia supernovae (SNe Ia) have not been identified. Though they are no longer fashionable we investigate the consequences if a significant number of SNe Ia were edge-lit detonations (ELDs) of carbon/oxygen white dwarfs that have accreted a critical mass of helium. Our best understanding of the Phillips relation between light curve speed and peak luminosity assigns both these phenomena to the amount of $^{56}$Ni produced. Read More

We present a state-of-the-art N-body code which includes a detailed treatment of stellar and binary evolution as well as the cluster dynamics. This code is ideal for investigating all aspects relating to the evolution of star clusters and their stellar populations. It is applicable to open and globular clusters of any age. Read More

We find the distribution of coalescence times, birthrates, spatial velocities, and subsequent radial offsets of coalescing neutron stars (NSs) in various galactic potentials accounting for large asymmetric kicks introduced during a supernovae. The birthrates of bound NS-NS binaries are quite sensitive to the magnitude of the kick velocities but are, nevertheless, similar (~10 per Galaxy per Myr) to previous population synthesis studies. The distribution of merger times since zero-age main sequence is, however, relatively insensitive to the choice of kick velocities. Read More