Oliver T. Schmidt

Oliver T. Schmidt
Are you Oliver T. Schmidt?

Claim your profile, edit publications, add additional information:

Contact Details

Oliver T. Schmidt

Pubs By Year

Pub Categories

Physics - Mesoscopic Systems and Quantum Hall Effect (20)
Physics - Optics (11)
Physics - Materials Science (8)
Quantum Physics (7)
Physics - Other (2)
Physics - Strongly Correlated Electrons (1)
Mathematics - Algebraic Geometry (1)
Physics - Atomic and Molecular Clusters (1)
Physics - Biological Physics (1)
Physics - Fluid Dynamics (1)
Physics - Superconductivity (1)
Physics - Medical Physics (1)
Quantitative Biology - Cell Behavior (1)

Publications Authored By Oliver T. Schmidt

A sperm-driven micromotor is presented as cargo-delivery system for the treatment of gynecological cancers. This particular hybrid micromotor is appealing to treat diseases in the female reproductive tract, the physiological environment that sperm cells are naturally adapted to swim in. Here, the single sperm cell serves as an active drug carrier and as driving force, taking advantage of its swimming capability, while a laser-printed microstructure coated with a nanometric layer of iron is used to guide and release the sperm in the desired area by an external magnet and structurally imposed mechanical actuation, respectively. Read More

Superconducting micro- and nanohelices are proposed for the first time. A theoretical investigation of the superconducting state in the helical coils at the micro- and nanoscale is performed within the time-dependent Ginzburg-Landau approach. The pattern and number of vortices in a stationary distribution are determined by their confinement to the ultrathin helical spiral and can therefore be efficiently controlled by the helical stripe width and the helical pitch distance for both dense and sparse helices. Read More

Simple aerodynamic configurations under even modest conditions can exhibit complex flows with a wide range of temporal and spatial features. It has become common practice in the analysis of these flows to look for and extract physically important features, or modes, as a first step in the analysis. This step typically starts with a modal decomposition of an experimental or numerical dataset of the flow field, or of an operator relevant to the system. Read More

Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. Read More

We report on the investigation of plasmonic resonances in metallic M\"obius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase {\pi} provided by the topology of the M\"obius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the M\"obius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. Read More

Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50 fold reduction of the writing threshold compared to ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. Read More

Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (<1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Read More

The development of scalable sources of non-classical light is fundamental to unlock the technological potential of quantum photonics\cite{Kimble:Nat2008}. Among the systems under investigation, semiconductor quantum dots are currently emerging as near-optimal sources of indistinguishable single photons. However, their performances as sources of entangled-photon pairs are in comparison still modest. Read More

The coupling of resonant light and surface plasmons in metal layer coated optical microcavities results in the formation of hybrid photon-plasmon modes. Here, we comprehensively investigate the hybridization mechanism of photon-plasmon modes based on opto-plasmonic microtubular cavities. By changing the cavity structure and the metal layer thickness, weakly, moderately and strongly hybridized resonant modes are demonstrated depending on the photon-plasmon coupling strength. Read More

The scalability of quantum dot based non-classical light sources relies on the control over their dissimilar emission energies. Electric fields offer a promising route to tune the quantum dot emission energy through the quantum-confined Stark effect. However, electric fields have been mostly used for tuning the energy of single-photon emission from quantum dots, while electrical control over the energy of entangled-photon emission, which is crucial for building a solid-state quantum repeater using indistinguishable entangled photons, has not been realized yet. Read More

Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Read More

We demonstrate the first wavelength-tunable electrically-pumped source of non-classical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting-diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75-mm-long cell containing warm 87Rb atom vapor, we observe slow-light with a temporal delay of up to 3. Read More

We report results important for the creation of a best-of-both-worlds quantum hybrid system consisting of a solid-state source of single photons and an atomic ensemble as quantum memory. We generate single photons from a GaAs quantum dot (QD) frequency-matched to the Rb D2-transitions and then use the Rb transitions to analyze spectrally the quantum dot photons. We demonstrate lifetime-limited QD linewidths (1. Read More

Many of the envisioned quantum photonic technologies, e.g. a quantum repeater, rely on an energy- (wavelength-) tunable source of polarization entangled photon pairs. Read More

GaAs/AlGaAs quantum dots grown by in-situ droplet etching and nanohole infilling offer a combination of strong charge confinement, optical efficiency, and spatial symmetry required for polarization entanglement and spin-photon interface. Here we study spin properties of such dots. We find nearly vanishing electron $g$-factor ($g_e<0. Read More

The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled-photons. Semiconductor quantum dots are arguably the most attractive. They can generate indistinguishable entangled-photons deterministically, and are compatible with current photonic-integration technologies, a set of properties not shared by any other entanglement resource. Read More

The nonlinear magneto-plasmonics aims to utilize plasmonic excitations to control the mechanisms and taylor the efficiencies of the non-linear light frequency conversion at the nanoscale. We investigate the mechanisms of magnetic second harmonic generation in hybrid gold-cobalt-silver multilayer structures, which support propagating surface plasmon polaritons at both fundamental and second harmonic frequencies. Using magneto-optical spectroscopy in Kretschmann geometry, we show that the huge magneto-optical modulation of the second harmonic intensity is dominated by the excitation of surface plasmon polaritons at the second harmonic frequency, as shown by tuning the optical wavelength over the spectral region of strong plasmonic dispersion. Read More

We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step towards 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO2 nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out of plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. Read More

We demonstrate a compact, spectrally-selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split $D_1$ transition of Cs-vapors as a tunable delay-medium, we achieve a differential delay of up 2. Read More

Triggered sources of entangled photons play crucial roles in almost any existing protocol of quantum information science. The possibility to generate these non-classical states of light with high speed and using electrical pulses could revolutionize the field. Entangled-light-emitting-diodes (ELEDs) based on semiconductor quantum dots (QDs) are at present the only devices that can address this task 5. Read More

Quantum conductance fluctuations are investigated in disordered 3D topological insulator quantum wires. Both experiments and theory reveal a new transport regime in a mesoscopic conductor, pseudo-ballistic transport, for which ballistic properties persist beyond the transport mean free path, characteristic of diffusive transport. It results in non-universal conductance fluctuations due to quasi-1D surface modes, as observed in long and narrow Bi$_2$Se$_3$ nanoribbons. Read More

The concept of Fourier synthesis is heavily employed in both consumer electronic products and fundamental research. In the latter, pulse shaping is key to dynamically initialize, probe and manipulate the state of classical or quantum systems. In nuclear magnetic resonance, for instance, shaped pulses have a long-standing tradition and the underlying fundamental concepts have subsequently been successfully extended to optical frequencies and even to implement quantum gate operations. Read More

We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature results in coupling of a topologically nontrivial magnetization pattern and topology of the object. The mechanism of this coupling is explored and illustrated by an example of ferromagnetic M\"obius ring, where a topologically induced domain wall appears as a ground state in case of strong easy-normal anisotropy. For the M\"obius geometry the curvilinear form of the exchange interaction produces an additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the domain wall and chirality of the M\"obius ring. Read More

Self-positioned nanomembranes such as rolled-up tubes and wrinkled thin films have been potential systems for a variety of applications and basic studies on elastic properties of nanometer-thick systems. Although there is a clear driving force towards elastic energy 1 minimization in each system, the exploration of intermediate states where specific characteristics could be chosen by a slight modification of a processing parameter had not been experimentally realized. In this work, arrays of freestanding III-V nanomembranes (NM) supported on one edge and presenting a coexistence of these two main behaviors were obtained by design of strain conditions in the NMs and controlled selective etching of patterned substrates. Read More

Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but QD structural asymmetries lower dramatically the degree of entanglement of the sources and hamper severely their real exploitation in the foreseen applications. Read More

Self-assembled Ge wires with a height of only 3 unit cells and a length of up to 2 micrometers were grown on Si(001) by means of a catalyst-free method based on molecular beam epitaxy. The wires grow horizontally along either the [100] or the [010] direction. On atomically flat surfaces, they exhibit a highly uniform, triangular cross section. Read More

The interplay of topological defects with curvature is studied for out-of-surface magnetic vortices in thin spherical nanoshells. In the case of easy-surface Heisenberg magnet it is shown that the curvature of the underlying surface leads to a coupling between the localized out-of-surface component of the vortex with its delocalized in-surface structure, i.e. Read More

We derive the effective dimensionally reduced Sch\"odinger equation for electrons in strain-driven curved nanostructures by adiabatic separation of fast and slow quantum degrees of freedom. The emergent strain-induced geometric potential strongly renormalizes the purely quantum curvature-induced potential and enhances the effects of curvature by several orders of magnitude. Applying this analysis to nanocorrugated films shows that this curvature-induced potential leads to strongly enhanced electron localization and the opening of substantial band gaps. Read More

We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods. Read More

We report on the implementation of metallic microtubes in a system of rubidium vapour at 230\,bar of argon buffer gas. The high buffer gas pressure leads to a widely pressure broadened linewidth of several nanometers, interpolating between the sharp atomic physics spectra and the band structure of solid state systems. Tube-like metallic waveguide structures have been inserted in the high pressure buffer gas system, allowing for an enhancement of the atom-light interaction over an optical guiding length in the tube of up to 1\,mm. Read More

We demonstrate how the controlled positioning of a plasmonic nanoparticle modifies the photoluminescence of a single epitaxial GaAs quantum dot. The antenna particle leads to an increase of the luminescence intensity by about a factor of eight. Spectrally and temporally resolved photoluminescence measurements prove an increase of the quantum dot's excitation rate. Read More

We study the electronic and optical properties of laterally coupled InGaAs/GaAs quantum dot molecules under lateral electric field. We find that electrons perceive the double-dot structure as a compound single object, while the holes discern two well separated dots. Through a combination of predictive atomistic modeling, detailed morphology studies, and single object micro-photoluminescence measurements, we show that this peculiar confinement results in an unusual heterogeneous behavior of electrons and holes with profound consequences on optical properties. Read More

We construct a hypersurface of degree 5 in projective space $\PP^8(\CC)$ which contains exactly 23436 ordinary nodes and no further singularities. This limits the maximum number $\mu_{8}(5)$ of ordinary nodes a hyperquintic in $\PP^8(\CC)$ can have to $23436 \leq \mu_{8}(5) \leq 27876$. Our method generalizes the approach by the $3^{\text{rd}}$ author for the construction of a quintic threefold with 130 nodes in an earlier paper. Read More

we demonstrate a technology "Release and bond-back of layers (REBOLA)" that exploits the deterministic wrinkling of a semiconductor layer to create well-defined and versatile nanochannel networks. In linear networks, the periodicity of branch channels as a function of etch-width was analyzed and compared with theoretical calculations. A self-similar folding phenomenon of wrinkles near a fixed boundary was revealed by autocorrelation analysis. Read More

A radial InGaAs/GaAs/1-hexadecanethiol superlattice is fabricated by the roll-up of a strained InGaAs/GaAs bilayer passivated with a molecular self-assembled monolayer. Our technique allows the formation of multi-period inorganic/organic hybrid heterostructures. This paper contains the detailed experimental description of how to fabricate these structures. Read More

One of the biggest challenges of nanotechnology is the fabrication of nano-objects with perfectly controlled properties. Here we employ a focused laser beam both to characterize and to {\it in-situ} modify single semiconductor structures by heating them from cryogenic to high temperatures. The heat treatment allows us to blue-shift, in a broad range and with resolution-limited accuracy, the quantized energy levels of light and charge carriers confined in optical microcavities and self-assembled quantum dots (QDs). Read More