O. Yaron - Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel

O. Yaron
Are you O. Yaron?

Claim your profile, edit publications, add additional information:

Contact Details

O. Yaron
Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel

Pubs By Year

Pub Categories

High Energy Astrophysical Phenomena (32)
Solar and Stellar Astrophysics (29)
Cosmology and Nongalactic Astrophysics (18)
Astrophysics of Galaxies (7)
Instrumentation and Methods for Astrophysics (4)

Publications Authored By O. Yaron

Superluminous supernovae (SLSNe) are the most luminous supernovae in the universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright, and blue regions. Read More

Affiliations: 1Caltech/IPAC, 2Caltech, 3Dark, Denmark, 4Weizmann, 5Weizmann, 6OKC, 7SDSU, 8OKC, 9OKC, 10Weizmann, 11GSFC, 12Weizmann, 13Weizmann, 14Weizmann, 15Caltech, 16Caltech/IPAC, 17JPL, 18Los Alamos

We present observations of two new hydrogen-poor superluminous supernovae (SLSN-I), iPTF15esb and iPTF16bad, showing late-time H-alpha emission. Including the previously published iPTF13ehe, this makes up a total of three such events to date. iPTF13ehe is one of the most luminous and the slowest evolving SLSNe-I, whereas the other two are less luminous and fast decliners. Read More

Ten weeks' daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called Maximum-Magnitude Rate of Decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here we demonstrate that the Buscombe - de Vaucouleurs hypothesis, that all novae converge to nearly the same absolute magnitude about two weeks after maximum light, is strongly supported by our M87 nova data. Read More

The extensive grid of numerical simulations of nova eruptions of Yaron et al.(2005) first predicted that some classical novae might deviate significantly from the Maximum Magnitude - Rate of Decline (MMRD) relation, which purports to characterise novae as standard candles. Kasliwal et al. Read More

With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF13dqy = SN 2013fs, a mere ~3 hr after explosion. Read More

We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca II] emission. A striking feature of both transients is their host environments: PTF12bho is an intra-cluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Read More

We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. Read More

We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to those observed in other SLSNe-I. Read More

When a star passes within the tidal radius of a supermassive black hole, it will be torn apart. For a star with the mass of the Sun ($M_\odot$) and a non-spinning black hole with a mass $<10^8 M_\odot$, the tidal radius lies outside the black hole event horizon and the disruption results in a luminous flare. Here we report observations over a period of 10 months of a transient, hitherto interpreted as a superluminous supernova. Read More

The progenitors of some supernovae (SNe) exhibit outbursts with super-Eddington luminosities prior to their final explosions. This behavior is common among Type IIn SNe, but the driving mechanisms of these precursors are not yet well understood. SNHunt 275 was announced as a possible new SN during May 2015. Read More

We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013, and derive measurements of their luminosities, star-formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe are found almost exclusively in low-mass (M < 2x10^9 M_sun) and metal-poor (12+log[O/H] < 8.4) galaxies. Read More

The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity $L_{\mathrm{p}}$, enabling the construction of a luminosity function. Subsequently, the mass of $^{56}$Ni synthesised in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Read More

Type IIP supernovae (SNe IIP) have recently been proposed as metallicity ($Z$) probes. The spectral models of Dessart et al. (2014) showed that the pseudo-equivalent width of Fe II $\lambda$5018 (pEW$_{5018}$) during the plateau phase depends on the primordial $Z$, but there was a paucity of SNe IIP exhibiting pEW$_{5018}$ that were compatible with $Z < 0. Read More

Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra ($\leq 10$ days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 Type II SNe showing flash-ionized (FI) signatures in their first spectra. Read More

During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of $57$ $R$-band Type II SN light curves that are well monitored during their rise, having $>5$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within $1-3$ days. Read More

The progenitor stars of several Type IIb supernovae (SNe) show indications for extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby Type IIb SNe to look for such precursors during the final years prior to the SN explosion. Read More

Affiliations: 1Caltech, 2SDSU, 3Weizmann, 4Weizmann, 5Liverpool, 6Copenhagen, 7Weizmann, 8Weizmann, 9Weizmann, 10Caltech, 11GSFC, 12Caltech, 13Caltech, 14LBNL, 15JPL, 16Los Alamos, 17Weizmann

iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z=0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises within (83-148)days (rest-frame) to reach a peak bolometric luminosity of 1. Read More

The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. Read More

Affiliations: 1Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA, 2Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany, 3Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel, 4Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF, United Kingdom, 5Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA, 6Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel, 7National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719, USA, 8Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, Room 529, New York, NY 10003, USA, 9Department of Astronomy, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden, 10Department of Astronomy, University of Texas, Austin, TX 78712, USA, 11Steward Observatory, University of Arizona, Tucson, AZ 85721, USA, 12Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel

We present new Hubble Space Telescope (HST) multi-epoch ultraviolet (UV) spectra of the bright Type IIb SN 2013df, and undertake a comprehensive anal- ysis of the set of four Type IIb supernovae for which HST UV spectra are available (SN 1993J, SN 2001ig, SN 2011dh, and SN 2013df). We find strong diversity in both continuum levels and line features among these objects. We use radiative-transfer models that fit the optical part of the spectrum well, and find that in three of these four events we see a UV continuum flux excess, apparently unaffected by line absorption. Read More


The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. We describe the data reduction strategy and data products which are publicly available through the ESO archive as the Spectroscopic Survey Data Release 1 (SSDR1). PESSTO uses the New Technology Telescope with EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. Read More

We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L= 0.9 x 10^{42} erg/s and duration ~90 days, which is somewhat shorter than standard Type II-P supernovae. Read More

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of $z=0.07$ implies an absolute magnitude in the rest-frame $I$-band of M$_{I}\sim-17. Read More

Affiliations: 1WIS, 2WIS, 3WIS, 4WIS, 5NASA GSFC, 6Carnegie, 7CIT, 8WIS, 9WIS, 10UT Austin, 11CIT, 12WIS, 13OKC, 14OKC, 15CIT, 16WIS, 17CIT, 18LBNL, 19UCB, 20UT Austin

The explosive fate of massive stripped Wolf-Rayet (W-R) stars is a key open question in stellar physics. An appealing option is that hydrogen-deficient W-R stars are the progenitors of some H-poor supernova (SN) explosions of Types IIb, Ib, and Ic. A blue object, having luminosity and colors consistent with those of some W-R stars, has been recently identified at the location of a SN~Ib in pre-explosion images but has not yet been conclusively determined to have been the progenitor. Read More

Since the discovery of the unusual prototype SN 2002cx, the eponymous class of low-velocity, hydrogen-poor supernovae has grown to include at most another two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 hydrogen-poor supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: The "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to the "SN 2002es-like" supernovae. Read More

Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Read More

There is a growing number of supernovae (SNe), mainly of Type IIn, which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to some poorly charted phenomena in the final stages of stellar evolution. Here we present a sample of 16 SNe IIn for which we have Palomar Transient Factory (PTF) observations obtained prior to the SN explosion. Read More

We present optical photometric and spectroscopic observations of the Type Ibn (SN 2006jc-like) supernova iPTF13beo. Detected by the intermediate Palomar Transient Factory ~3 hours after the estimated first light, iPTF13beo is the youngest and the most distant (~430 Mpc) Type Ibn event ever observed. The iPTF13beo light curve is consistent with light curves of other Type Ibn SNe and with light curves of fast Type Ic events, but with a slightly faster rise-time of two days. Read More

We present our observations of SN 2010mb, a Type Ic SN lacking spectroscopic signatures of H and He. SN 2010mb has a slowly-declining light curve ($\sim600\,$days) that cannot be powered by $^{56}$Ni/$^{56}$Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free CSM including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities ($\sim10^9$cm$^{-3}$). Read More

We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 square degrees surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory (iPTF), iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Read More

We report optical and near-infrared observations of SN 2012ca with the Public ESO Spectroscopy Survey of Transient Objects (PESSTO), spread over one year since discovery. The supernova (SN) bears many similarities to SN 1997cy and to other events classified as Type IIn but which have been suggested to have a thermonuclear origin with narrow hydrogen lines produced when the ejecta impact a hydrogen-rich circumstellar medium (CSM). Our analysis, especially in the nebular phase, reveals the presence of oxygen, magnesium and carbon features. Read More

Only a few cases of type Ic supernovae (SNe) with high-velocity ejecta have been discovered and studied. Here we present our analysis of radio and X-ray observations of a Type Ic SN, PTF12gzk. The radio emission rapidly declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (~0. Read More

Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia show evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Read More

We present optical and infrared monitoring data of SN 2012hn collected by the Public ESO Spectroscopic Survey for Transient Objects (PESSTO). We show that SN 2012hn has a faint peak magnitude (MR ~ -15.7) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Read More

Various lines of evidence suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as a supernova. Interestingly, several models predict such pre-explosion outbursts. Establishing a causal connection between these mass-loss episodes and the final supernova explosion will provide a novel way to study pre-supernova massive-star evolution. Read More

We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion HST WFPC2 and ACS/WFC F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. Read More

Only a handful of supernovae (SNe) have been studied in multi-wavelength from radio to X-rays, starting a few days after explosion. The early detection and classification of the nearby type IIb SN2011dh/PTF11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at the youngest phase ever of a core-collapse supernova (days 3 to 12 after explosion) in the radio, millimeter and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Read More

Radiative transfer studies of Type Ia supernovae (SNe Ia) hold the promise of constraining both the time-dependent density profile of the SN ejecta and its stratification by element abundance which, in turn, may discriminate between different explosion mechanisms and progenitor classes. Here we present a detailed analysis of Hubble Space Telescope ultraviolet (UV) and ground-based optical spectra and light curves of the SN Ia SN 2010jn (PTF10ygu). SN 2010jn was discovered by the Palomar Transient Factory (PTF) 15 days before maximum light, allowing us to secure a time-series of four UV spectra at epochs from -11 to +5 days relative to B-band maximum. Read More

We present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. Read More

We construct a photometrically calibrated catalog of non-variable sources from the Palomar Transient Factory (PTF) observations. The first version of this catalog presented here, the PTF photometric catalog 1.0, contains calibrated R_PTF-filter magnitudes for about 21 million sources brighter than magnitude 19, over an area of about 11233 deg^2. Read More

(Abridged). The optical light curve of some SNe may be powered by the outward diffusion of the energy deposited by the explosion shock in optically thick circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. Read More