O. Blanco Garcia

O. Blanco Garcia
Are you O. Blanco Garcia?

Claim your profile, edit publications, add additional information:

Contact Details

O. Blanco Garcia

Pubs By Year

Pub Categories

Physics - Plasma Physics (20)
Physics - Other (2)
Physics - Computational Physics (2)
Quantitative Biology - Quantitative Methods (2)
Earth and Planetary Astrophysics (1)
Nuclear Theory (1)
Solar and Stellar Astrophysics (1)
High Energy Physics - Experiment (1)
Quantitative Biology - Populations and Evolution (1)
Statistics - Applications (1)
Physics - Data Analysis; Statistics and Probability (1)
Physics - Accelerator Physics (1)
Quantitative Biology - Neurons and Cognition (1)

Publications Authored By O. Blanco Garcia

Based on a stochastic model for intermittent fluctuations in the boundary region of magnetically confined plasmas, an expression for the level crossing rate is derived from the joint distribution of the process and its derivative. From this the average time spent by the process above a certain threshold level is obtained, and limits of both high and low intermittency are investigated and compared to previously known results. In the case of a highly intermittent process, the distribution of time spent above threshold is obtained. Read More

Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and intermittent towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Read More

The auto-correlation function and the frequency power spectral density due to a super-position of uncorrelated exponential pulses are considered. These are shown to be independent of the degree of pulse overlap and thereby the intermittency of the stochastic process. For constant pulse duration and a one-sided exponential pulse shape, the power spectral density has a Lorentzian shape which is flat for low frequencies and a power law at high frequencies. Read More

We study the dynamics of seeded plasma blobs and depletions in an (effective) gravitational field. For incompressible flows the radial center of mass velocity of blobs and depletions is proportional to the square root of their initial cross-field size and amplitude. If the flows are compressible, this scaling holds only for ratios of amplitude to size larger than a critical value. Read More

A stochastic model for intermittent fluctuations due to a super-position of uncorrelated Lorentzian pulses is presented. For constant pulse duration, this is shown to result in an exponential power spectral density for the stationary process. A random distribution of pulse durations modifies the frequency spectrum and several examples are shown to result in power law spectra. Read More

Radial profiles of the ion saturation current and its fluctuation statistics are presented from probe measurements in L-mode, neutral beam heated plasmas at the outboard mid-plane region of KSTAR. The familiar two-layer structure, seen elsewhere in tokamak L-mode discharges, with a steep near-SOL profile and a broad far-SOL profile, is observed. The profile scale length in the far-SOL increases drastically with line-averaged density, thereby enhancing plasma interactions with the main chamber walls. Read More

Mixed-species growth models are needed as a synthesis of ecological knowledge and for guiding forest management. Individual-tree models have been commonly used, but the difficulties of reliably scaling from the individual to the stand level are often underestimated. Emergent properties and statistical issues limit their effectiveness. Read More

Filtered Poisson processes are often used as reference models for intermittent fluc- tuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Read More

Authors: The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

The interchange dynamics and velocity scaling of blob-like plasma filaments are investigated using a two-field reduced fluid model. For incompressible flows due to buoyancy the maximum velocity is proportional to the square root of the relative amplitude and the square root of its cross-field size. For compressible flows in a non-uniform magnetic field this square root scaling only holds for ratios of amplitudes to cross-field sizes above a certain threshold value. Read More

Based on a stochastic model for intermittent fluctuations in the boundary region of magnetically confined plasmas, an expression for the level crossing rate is derived from the joint distribution of the process and its derivative. From this the average time spent by the process above a certain threshold level is obtained. This provides novel predictions of plasma-wall interactions due to transient transport events associated with radial motion of blob-like structures in the scrape-off layer. Read More

Intermittent fluctuations in the TCV scrape-off layer have been investigated by analysing long Langmuir probe data time series under stationary conditions, allowing calculation of fluctuation statistics with high accuracy. The ion saturation current signal is dominated by the frequent occurrence of large-amplitude bursts attributed to filament structures moving through the scrape-off layer. The average burst shape is well described by a double-exponential wave-form with constant duration, while the waiting times and peak amplitudes of the bursts both have an exponential distribution. Read More

Understanding the properties of response time distributions is a long-standing problem in cognitive science. We provide a tutorial overview of several contemporary models that assume power law scaling is a plausible description of the skewed heavy tails that are typically expressed in response time distributions. We discuss several properties and markers of these distribution functions that have implications for cognitive and neurophysiological organization supporting a given cognitive activity. Read More

We study long time series of the ion saturation current and floating potential, sampled by Langmuir probes dwelled in the outboard mid-plane scrape off layer and embedded in the lower divertor baffle of Alcator C-Mod. A series of ohmically heated L-mode plasma discharges is investigated with line-averaged plasma density ranging from n_e/n_G = 0.15 to 0. Read More

Particle density fluctuations in the scrape-off layer of magnetically confined plasmas, as measured by gas-puff imaging or Langmuir probes, are modeled as the realization of a stochastic process in which a superposition of pulses with a fixed shape, an exponential distribution of waiting times and amplitudes represents the radial motion of blob-like structures. With an analytic formulation of the process at hand, we derive expressions for the mean-squared error on estimators of sample mean and sample variance as a function of sample length, sampling frequency, and the parameters of the stochastic process. % Employing that the probability distribution function of a particularly relevant shot noise process is given by the gamma distribution, we derive estimators for sample skewness and kurtosis, and expressions for the mean-squared error on these estimators. Read More

The motion of charged particles in weakly varying electromagnetic fields is described using a perturbation method. This provides a systematic and physically transparent description of the particle motion on fast and slow spatio-temporal scales, associated with gyration and drift motions, respectively. A detailed discussion is given of the guiding center concept and the non-inertial frame of reference. Read More

In this work, non-recurrent Forbush decreases (FDs) triggered by the passage of shock-driven interplanetary coronal mass ejections (ICMEs) have been analyzed. Fifty-nine ICMEs have been studied but only the 25% of them were associated to a FD. We find that shock-driving magnetic clouds (MCs) produce deeper FDs than shock-driving ejecta. Read More

Bursty fluctuations in the scrape-off layer (SOL) of Alcator C-Mod have been analyzed using gas puff imaging data. This reveals many of the same fluctuation properties as Langmuir probe measurements, including normal distributed fluctuations in the near SOL region while the far SOL plasma is dominated by large amplitude bursts due to radial motion of blob-like structures. Conditional averaging reveals burst wave forms with a fast rise and slow decay and exponentially distributed waiting times. Read More

Single-point measurements of fluctuations in the scrape-off layer of magnetized plasmas are generally found to be dominated by large-amplitude bursts which are associated with radial motion of blob-like structures. A stochastic model for these fluctuations is presented, with the plasma density given by a random sequence of bursts with a fixed wave form. Under very general conditions, this model predicts a parabolic relation between the skewness and kurtosis moments of the plasma fluctuations. Read More

A Michelson interferometer using Bose-Einstein condensates is demonstrated with coherence times of up to 44 ms and arm separations up to 0.18 mm. This arm separation is larger than that observed for any previous atom interferometer. Read More

We describe a novel atom trap for Bose-Einstein condensates of 87Rb to be used in atom interferometry experiments. The trap is based on a time-orbiting potential waveguide. It supports the atoms against gravity while providing weak confinement to minimize interaction effects. Read More

The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. Read More

Zonal flows are recognised to play a crucial role for magnetised plasma confinement. The genesis of these flows out of turbulent fluctuations is therefore of significant interest. We investigate the relative importance of zonal flow generation mechanisms via the Reynolds stress, Maxwell stress, and geodesic acoustic mode (GAM) transfer in drift-Alfv\'en turbulence. Read More

The properties of low-frequency convective fluctuations and transport are investigated for the boundary region of magnetized plasmas. We employ a two-dimensional fluid model for the evolution of the global plasma quantities in a geometry and with parameters relevant to the scrape-off layer of confined toroidal plasmas. Strongly intermittent plasma transport is regulated by self-consistently generated sheared poloidal flows and is mediated by bursty ejection of particles and heat from the bulk plasma in the form of blobs. Read More

Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of confined plasmas are presented. We observe bursty ejection of particles and heat from the bulk plasma in the form of blobs. These structures propagate far into the scrape-off layer where they are lost due to transport along open magnetic field lines. Read More

The statistical properties of the $E \times B$ flux in different types of plasma turbulence simulations are investigated using probability density distribution functions (PDF). The physics included in the models ranges from two dimensional drift-wave turbulence to three dimensional MHD simulations. The PDFs of the flux surface averaged transport are in good agreement with an extreme value distribution (EVD). Read More

We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Read More