Nicholas R. Hutzler

Nicholas R. Hutzler
Are you Nicholas R. Hutzler?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Nicholas R. Hutzler
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Atomic Physics (13)
 
Physics - Chemical Physics (5)
 
High Energy Physics - Experiment (2)
 
Quantum Physics (1)
 
High Energy Physics - Phenomenology (1)
 
Physics - Instrumentation and Detectors (1)

Publications Authored By Nicholas R. Hutzler

We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and RF modulated and DC magnetic fields. The RF MOT confines $1.1(3) \times 10^5$ CaF molecules at a density of $4(1) \times 10^6$ cm$^{-3}$, which is an order of magnitude greater than previous molecular MOTs. Read More

We demonstrate with a RF-MOT the one dimensional, transverse magneto-optical compression of a cold beam of calcium monofluoride (CaF). By continually alternating the magnetic field direction and laser polarizations of the magneto-optical trap, a photon scattering rate of $2\pi \times$0.4 MHz is achieved. Read More

Chemical reactions can be surprisingly efficient at ultracold temperatures ( < 1mK) due to the wave nature of atoms and molecules. The study of reactions in the ultracold regime is a new research frontier enabled by cooling and trapping techniques developed in atomic and molecular physics. In addition, ultracold molecular gases that offer diverse molecular internal states and large electric dipolar interactions are sought after for studies of strongly interacting many-body quantum physics. Read More

We recently set a new limit on the electric dipole moment of the electron (eEDM) (J. Baron et al., ACME collaboration, Science 343 (2014), 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many CP-violating extensions to the Standard Model. Read More

We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64{\deg}C, more than 85{\deg}C below the ambient temperature. Read More

Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. Read More

Laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules is achieved. Starting from a two-stage buffer gas beam source, we apply frequency-broadened "white-light" slowing and observe approximately 6x10^4 CaF molecules with velocities near 10\,m/s. CaF is a candidate for collisional studies in the mK regime. Read More

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilation with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable ($10^{-27}$-$10^{-30}$ $e$ cm) electron electric dipole moment (EDM, $d_e$), which is an asymmetric charge distribution along the spin ($\vec{S}$). Read More

Measurement of a non-zero electric dipole moment (EDM) of the electron within a few orders of magnitude of the current best limit of |d_e| < 1.05 e -27 e cm would be an indication of physics beyond the Standard Model. The ACME Collaboration is searching for an electron EDM by performing a precision measurement of electron spin precession in the metastable H state of thorium monoxide (ThO) using a slow, cryogenic beam. Read More

Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i. Read More

The metastable $H \ {}^3\Delta_1$ state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM). The magnetic dipole moment $\mu_H$ and the molecule-fixed electric dipole moment $D_H$ of this state are measured in preparation for a search for the eEDM. The small magnetic moment $\mu_H = 8. Read More

Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ~10^15-10^16 cm^-3 (Reynolds number ~1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. Read More

The electric dipole moment of the electron (eEDM) is a signature of CP-violating physics beyond the Standard Model. We describe an ongoing experiment to measure or set improved limits to the eEDM, using a cold beam of thorium monoxide (ThO) molecules. The metastable $H {}^3\Delta_1$ state in ThO has important advantages for such an experiment. Read More