N. Y. Wang - Daya Bay Collaboration

N. Y. Wang
Are you N. Y. Wang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
N. Y. Wang
Affiliation
Daya Bay Collaboration
Location

Pubs By Year

Pub Categories

 
Physics - Strongly Correlated Electrons (9)
 
Physics - Materials Science (9)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (6)
 
Earth and Planetary Astrophysics (5)
 
Computer Science - Computer Vision and Pattern Recognition (4)
 
High Energy Physics - Phenomenology (4)
 
Physics - Superconductivity (4)
 
Instrumentation and Methods for Astrophysics (4)
 
Computer Science - Learning (3)
 
High Energy Physics - Experiment (3)
 
Computer Science - Neural and Evolutionary Computing (3)
 
High Energy Astrophysical Phenomena (3)
 
Computer Science - Distributed; Parallel; and Cluster Computing (2)
 
Computer Science - Artificial Intelligence (2)
 
Physics - Instrumentation and Detectors (2)
 
Computer Science - Data Structures and Algorithms (2)
 
Astrophysics of Galaxies (2)
 
Nuclear Experiment (2)
 
Mathematics - Information Theory (2)
 
Computer Science - Information Theory (2)
 
Mathematics - Mathematical Physics (1)
 
Mathematics - Quantum Algebra (1)
 
Solar and Stellar Astrophysics (1)
 
Nonlinear Sciences - Exactly Solvable and Integrable Systems (1)
 
Nuclear Theory (1)
 
Mathematical Physics (1)

Publications Authored By N. Y. Wang

In intercalated transition metal dichalcogenide $Fe_xTaS_2$ (0.2 $\leq$ x $\leq$ 0.4) single crystals, large magnetic anisotropy is observed. Read More

In this paper, we construct a new even constrained B(C) type Toda hierarchy and derive its B(C) type Block type additional symmetry. Also we generalize the B(C) type Toda hierarchy to the $N$-component B(C) type Toda hierarchy which is proved to have symmetries of a coupled $\bigotimes^NQT_+ $ algebra ( $N$-folds direct product of the positive half of the quantum torus algebra $QT$). Read More

We derive the Sun's offset from the local mean Galactic plane($z_\odot$) using the observed $z$ distribution of young pulsars. Pulsar distances are obtained from measurements of annual parallax, HI absorption spectra or associations where available and otherwise from the observed pulsar dispersion and a model for the distribution of free electrons in the Galaxy. We fit the cumulative distribution function for a ${\rm sech}^2(z)$ distribution function, representing an isothermal self-gravitating disk, with uncertainties being estimated using the bootstrap method. Read More

2017Apr
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

Pulsar positions can be measured with high precision using both pulsar timing methods and very-long-baseline interferometry (VLBI). Pulsar timing positions are referenced to a solar-system ephemeris, whereas VLBI positions are referenced to distant quasars. Here we compare pulsar positions from published VLBI measurements with those obtained from pulsar timing data from the Nanshan and Parkes radio telescopes in order to relate the two reference frames. Read More

Few-layer black phosphorus possesses unique electronic properties giving rise to distinct quantum phenomena and thus offers a fertile platform to explore the emergent correlation phenomena in low dimensions. A great progress has been demonstrated in improving the quality of hole-doped few-layer black phosphorus and its quantum transport studies, whereas the same achievements are rather modest for electron-doped few-layer black phosphorus. Here, we report the ambipolar quantum transport in few-layer black phosphorus exhibiting undoubtedly the quantum Hall effect for hole transport and showing clear signatures of the quantum Hall effect for electron transport. Read More

In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. Read More

The core number of a vertex is a basic index depicting cohesiveness of a graph, and has been widely used in large-scale graph analytics. In this paper, we study the update of core numbers of vertices in dynamic graphs with edge insertions/deletions, which is known as the core maintenance problem. Different from previous approaches that just focus on the case of single-edge insertion/deletion and sequentially handle the edges when multiple edges are inserted/deleted, we investigate the parallelism in the core maintenance procedure. Read More

Motivated by the potential prospects of the $B_{c}^{\ast}$ meson samples at hadron colliders, the bottom-changing $B_{c}^{\ast}$ ${\to}$ ${\psi}(1S,2S)P$, ${\eta}_{c}(1S,2S)P$ weak decays are first studied with the perturbative QCD approach, where $P$ $=$ ${\pi}$ and $K$. It is found that branching ratio of the CKM-favored $B_{c}^{\ast}$ ${\to}$ $J/{\psi}{\pi}$ decay is about ${\sim}$ ${\cal O}(10^{-8})$, which might be measurable at the future LHC experiments. Read More

755 new CCD observations during the years 2014-2016 have been reduced to derive the precise positions of Triton, the first satellite of Neptune. The observations were made by the 1 m telescope at Yunnan Observatory over fifteen nights. The positions of Triton are measured with respect to the stars in Gaia DR1 star catalogue. Read More

The branching ratio and direct $CP$ asymmetry of the ${\Upsilon}(1S)$ ${\to}$ $B_{c}D_{s}$ weak decay are estimated with the perturbative QCD approach. It is found that (1) The direct $CP$-violating asymmetry is close to zero. (2) the branching ratio ${\cal B}r({\Upsilon}(1S){\to}B_{c}D_{s})$ ${\gtrsim}$ $10^{-10}$ might be measurable at the future experiments. Read More

Atomically thin black phosphorus (BP) field-effect transistors show strong-weak localization transition which is tunable through gate voltages. Hopping transports through charge impurity induced localized states are measured at low-carrier density regime. Variable-range hopping model is applied to simulate the charge carrier scattering behavior. Read More

Migration of oxygen vacancies has been proposed to play an important role in the bipolar memristive behaviors since oxygen vacancies can directly determine the local conductivity in many systems. However, a recent theoretical work demonstrated that both migration of oxygen vacancies and coexistence of cation and anion vacancies are crucial to the occurrence of bipolar memristive switching, normally observed in the small-sized NiO. So far, experimental work addressing this issue is still lacking. Read More

Three-dimensional topological insulators (3D TIs) represent novel states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction- and valence-bands. However, the bulk-band inversion which is intimately tied to the topologically nontrivial nature of 3D TIs has rarely been investigated by experiments. Besides, 3D massive Dirac fermions with nearly near band dispersions were seldom observed in TIs. Read More

Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Read More

We report the experimental demonstration of a class of ultrasonic metasurfaces made of patterned silicon thin wafers partially covered by Si3N4 film that exhibit over 24 dB of sound transmission loss around 0.7 MHz, which is caused by the cancelation of sound waves emitted by the resonant Si3N4 membrane and the ones through the silicon backbone in each unit cell. These metasurfaces are expected to have high reflection with little total loss even at ultrasonic frequency. Read More

In order to obtain high precision CCD positions of Himalia, the sixth Jovian satellite, a total of 598 CCD observations have been obtained during the years 2015-2016. The observations were made by using the 2.4 m and 1 m telescopes administered by Yunnan Observatories over 27 nights. Read More

Using a field-effect transistor (FET) configuration with solid Li-ion conductor (SIC) as gate dielectric, we have successfully tuned carrier density in FeSe$_{0.5}$Te$_{0.5}$ thin flakes, and the electronic phase diagram has been mapped out. Read More

As billions of devices get connected to the Internet, it will not be sustainable to use the cloud as a centralised server. The way forward is to decentralise computations away from the cloud towards the edge of the network closer to the user. This reduces the latency of communication between a user device and the cloud, and is the premise of 'fog computing' defined in this paper. Read More

Multi-nucleon transfer in $^{86}$Kr+$^{64}$Ni at an incident energy of 25 MeV/nucleon is for the first time investigated with a microscopic dynamics model: improved quantum molecular dynamics (ImQMD) model. The measured isotope distributions are reasonably well reproduced by using the ImQMD model together with a statistical code (GEMINI) for describing the secondary decay of fragments. The reaction mechanism is explored with the microscopic dynamics simulations from central to peripheral collisions. Read More

Face sketch synthesis plays an important role in both digital entertainment and law enforcement. It generally consists of two parts: neighbor selection and reconstruction weight representation. State-of-the-art face sketch synthesis methods perform neighbor selection online in a data-driven manner by $K$ nearest neighbor ($K$-NN) searching. Read More

Neural Style Transfer has recently demonstrated very exciting results which catches eyes in both academia and industry. Despite the amazing results, the principle of neural style transfer, especially why the Gram matrices could represent style remains unclear. In this paper, we propose a novel interpretation of neural style transfer by treating it as a domain adaptation problem. Read More

We fabricate high-mobility p-type few-layer WSe2 field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level (LL) crossing effects at ultra-low coincident angles, revealing that the Zeeman energy is about three times as large as the cyclotron energy near the valence band top at {\Gamma} valley. This result implies the significant roles played by the exchange interactions in p-type few-layer WSe2, in which itinerant or QH ferromagnetism likely occurs. Read More

This paper initiates the studies of parallel algorithms for core maintenance in dynamic graphs. The core number is a fundamental index reflecting the cohesiveness of a graph, which are widely used in large-scale graph analytics. The core maintenance problem requires to update the core numbers of vertices after a set of edges and vertices are inserted into or deleted from the graph. Read More

The geometric distortion of CCD field of view has direct influence on the positional measurements of CCD observations. In order to obtain high precision astrometric results, the geometric distortion should be derived and corrected precisely. As presented in our previous work Peng et al. Read More

We report the single-crystal growth and the fundamental magnetic and thermodynamic properties of a rare-earth triangular lattice antiferromagnet CeCd$_3$As$_3$. In this rare-earth antiferromagnet, the Ce local moments form a perfect triangular lattice. Due to the spin-orbital-entangled nature of the Ce local moments, the compound exhibits extremely anisotropic antiferromagnetic couplings along the c direction and in the ab plane respectively. Read More

We report single crystal growth and physical properties characterization of YbFe$_2$Al$_{10}$ compounds. The measurements of resistivity, magnetic susceptibility, and specific heat show different behaviors from previous studies on polycrystal samples. A mixed valent characteristic with moderate mass enhancement is indicated. Read More

Pulse arrival time measurements over fourteen years with the Nanshan 25-m and Parkes 64-m radio telescopes have been used to determine the average profile and timing properties for PSR J1757$-$2421 (B1754$-$24). Analysis of the radio profile data shows a large variation of spectral index across the profile and an unusual increase in component separation with increasing frequency. The timing observations show that PSR B1754$-$24 underwent a large glitch with a fractional increase in spin frequency of $\Delta\nu_{\rm g}/\nu\sim 7. Read More

The vicinity of a Mott insulating phase has constantly been a fertile ground for finding exotic quantum states, most notably the high Tc cuprates and colossal magnetoresistance manganites. The layered transition metal dichalcogenide 1T-TaS2 represents another intriguing example, in which the Mott insulator phase is intimately entangled with a series of complex charge-density-wave (CDW) orders. More interestingly, it has been recently found that 1T-TaS2 undergoes a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. Read More

YbInCu$_4$ undergoes a first order structural phase transition near $T_v$=40 K associated with an abrupt change of Yb valence state. We perform ultrafast pump-probe measurement on YbInCu$_4$ and find that the expected heavy fermion properties arising from the \emph{c-f} hybridization exist only in a limited temperature range above $T_v$. Below $T_v$, the compound behaves like a normal metal though a prominent hybridization energy gap is still present in infrared measurement. Read More

In this paper, we study an important yet less explored aspect in video detection and tracking -- stability. Surprisingly, there is no prior work that tried to study it. As a result, we start our work by proposing a novel evaluation metric for video detection which considers both stability and accuracy. Read More

Although Deep Convolutional Neural Networks (CNNs) have liberated their power in various computer vision tasks, the most important components of CNN, convolutional layers and fully connected layers, are still limited to linear transformations. In this paper, we propose a novel Factorized Bilinear (FB) layer to model the pairwise feature interactions by considering the quadratic terms in the transformations. Compared with existing methods that tried to incorporate complex non-linearity structures into CNNs, the factorized parameterization makes our FB layer only require a linear increase of parameters and affordable computational cost. Read More

Topological crystalline insulators (TCIs) are insulating materials that possess metallic surface states protected by crystalline symmetry. The (001) surface states have been predicted to exhibit many novel physical properties (such as superconductivity, quantum anomalous Hall effect and Weyl fermions) that are widely tunable under various perturbations, rendering these materials a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe the optical and transport properties of the surface states owing to the presence of bulk carriers. Read More

Topological states of matter originate from distinct topological electronic structures of materials. As for strong topological insulators (STIs), the topological surface (interface) is a direct consequence of electronic structure transition between materials categorized to different topological genus. Therefore, it is fundamentally interesting if such topological character can be manipulated. Read More

In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. Read More

We present a timing analysis of two Rossi X-ray Timing Explorer observations of the microquasar GRS 1915+105 during the heartbeat state. The phase-frequency-power maps show that the intermediate-frequency aperiodic X-ray variability weakens as the source softens in the slow rise phase, and when the quasi-periodic oscillation disappears in the rise phase of the pulse of the double-peaked class its sub-harmonic is still present with a hard phase lag. In the slow rise phase, the energy-frequency-power maps show that most of the aperiodic variability is produced in the corona, and may also induce the aperiodic variability observed at low energies from an accretion disk, which is further supported by the soft phase lag especially in the intermediate-frequency range (with a time delay up to 20 ms). Read More

The layered lanthanum silver antimonide LaAgSb$_2$ was known to experience two charge density (CDW) phase transitions, which were proposed recently to be closely related to the newly identified Dirac cone. We present optical spectroscopy and ultrafast pump-probe measurement on the compound. The development of energy gaps were clearly observed below the phase transition temperatures in optical conductivity, which removes most part of the free carrier spectral weight. Read More

We present a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM). The Galactic model has an extended thick disk representing the so-called warm interstellar medium, a thin disk representing the Galactic molecular ring, spiral arms based on a recent fit to Galactic HII regions, a Galactic Center disk and seven local features including the Gum Nebula, Galactic Loop I and the Local Bubble. An offset of the Sun from the Galactic plane and a warp of the outer Galactic disk are included in the model. Read More

We demonstrate that charge density wave (CDW) phase transition occurs on the surface of electronically doped multilayer graphene when the Fermi level approaches the M points (also known as van Hove singularities where the density of states diverge) in the Brillouin zone of graphene band structure. The occurrence of such CDW phase transitions are supported by both the electrical transport measurement and optical measurements in electrostatically doped multilayer graphene. The CDW transition is accompanied with the sudden change of graphene channel resistance at T$_m$= 100K, as well as the splitting of Raman G peak (1580 cm$^{-1}$). Read More

Motivated by the prospects of the potential ${\Upsilon}(1S)$ particle at high-luminosity heavy-flavor experiments, we studied the ${\Upsilon}(1S)$ ${\to}$ $B_{c}M$ weak decays, where $M$ $=$ ${\pi}$, ${\rho}$, $K^{(\ast)}$. The nonfactorizable contributions to hadronic matrix elements are taken into consideration with the QCDF approach. It is found that the CKM-favored ${\Upsilon}(1S)$ ${\to}$ $B_{c}{\rho}$ decay has branching ratio of ${\cal O}(10^{-10})$, which might be measured promisingly by the future experiments. Read More

With anticipation of abundant Upsilons data sample at high-luminosity heavy-flavor experiments in the future, we studied nonleptonic two-body weak decays of ${\Upsilon}(nS)$ below the open-bottom threshold with $n$ $=$ $1$, $2$ and $3$. It is found that branching ratios for ${\Upsilon}(1S,2S,3S)$ ${\to}$ $B_{c}{\rho}$ decays are relatively large among upsilons decay into $B_{c}M$ final states ($M$ $=$ ${\pi}$ ${\rho}$, $K$ and $K^{\ast}$) and can reach up to $10^{-10}$, which is promisingly detected by experiments at the running LHC and forthcoming SuperKEKB. Read More

2016Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

In future practical deployments of massive multi-input multi-output (MIMO) systems, the number of radio frequency (RF) chains at the base stations (BSs) may be much smaller than the number of BS antennas to reduce the overall expenditure. In this paper, we propose a novel design framework for joint data and artificial noise (AN) precoding in a multiuser massive MIMO system with limited number of RF chains, which improves the wireless security performance. With imperfect channel state information (CSI), we analytically derive an achievable lower bound on the ergodic secrecy rate of any mobile terminal (MT), for both analog and hybrid precoding schemes. Read More

We develop a novel field effect transistor (FET) device using solid ion conductor (SIC) as a gate dielectric, and we can tune the carrier density of FeSe by driving lithium ions in and out of the FeSe thin flakes, and consequently control the material properties and its phase transitions. A dome-shaped superconducting phase diagram was mapped out with increasing Li content, with $T_c$ $\sim$ 46.6 K for the optimal doping, and an insulating phase was reached at the extremely overdoped regime. Read More

We perform optical spectroscopy measurement across the charge density wave (CDW) phase transitions on single-crystal samples of Sr$_{3}$Rh$_{4}$Sn$_{13}$ and (Sr$_{0.5}$Ca$_{0.5}$)$_{3}$Rh$_{4}$Sn$_{13}$. Read More

Many cloud-based applications employ a data centre as a central server to process data that is generated by edge devices, such as smartphones, tablets and wearables. This model places ever increasing demands on communication and computational infrastructure with inevitable adverse effect on Quality-of-Service and Experience. The concept of Edge Computing is predicated on moving some of this computational load towards the edge of the network to harness computational capabilities that are currently untapped in edge nodes, such as base stations, routers and switches. Read More

Classification involves the learning of the mapping function that associates input samples to corresponding target label. There are two major categories of classification problems: Single-label classification and Multi-label classification. Traditional binary and multi-class classifications are sub-categories of single-label classification. Read More

Gun related violence is a complex issue and accounts for a large proportion of violent incidents. In the research reported in this paper, we set out to investigate the pro-gun and anti-gun sentiments expressed on a social media platform, namely Twitter, in response to the 2012 Sandy Hook Elementary School shooting in Connecticut, USA. Machine learning techniques are applied to classify a data corpus of over 700,000 tweets. Read More

In order to study the potential in high precision CCD astrometry of irregular satellites, we have made experimental observations for Himalia, the sixth and irregular satellite of Jupiter. A total of 185 CCD observations were obtained by using the 2.4 m telescope and 1 m telescope at Yunnan Observatories over ten nights. Read More

In this paper a high speed neural network classifier based on extreme learning machines for multi-label classification problem is proposed and dis-cussed. Multi-label classification is a superset of traditional binary and multi-class classification problems. The proposed work extends the extreme learning machine technique to adapt to the multi-label problems. Read More