# N. Toge - KEK

## Contact Details

NameN. Toge |
||

AffiliationKEK |
||

Location |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesPhysics - Accelerator Physics (11) High Energy Physics - Experiment (3) Physics - Instrumentation and Detectors (2) Computer Science - Other (1) High Energy Physics - Phenomenology (1) |

## Publications Authored By N. Toge

**Authors:**The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

**Authors:**Chris Adolphsen

^{1}, Maura Barone

^{2}, Barry Barish

^{3}, Karsten Buesser

^{4}, Philip Burrows

^{5}, John Carwardine

^{6}, Jeffrey Clark

^{7}, Hélène Mainaud Durand

^{8}, Gerry Dugan

^{9}, Eckhard Elsen

^{10}, Atsushi Enomoto

^{11}, Brian Foster

^{12}, Shigeki Fukuda

^{13}, Wei Gai

^{14}, Martin Gastal

^{15}, Rongli Geng

^{16}, Camille Ginsburg

^{17}, Susanna Guiducci

^{18}, Mike Harrison

^{19}, Hitoshi Hayano

^{20}, Keith Kershaw

^{21}, Kiyoshi Kubo

^{22}, Victor Kuchler

^{23}, Benno List

^{24}, Wanming Liu

^{25}, Shinichiro Michizono

^{26}, Christopher Nantista

^{27}, John Osborne

^{28}, Mark Palmer

^{29}, James McEwan Paterson

^{30}, Thomas Peterson

^{31}, Nan Phinney

^{32}, Paolo Pierini

^{33}, Marc Ross

^{34}, David Rubin

^{35}, Andrei Seryi

^{36}, John Sheppard

^{37}, Nikolay Solyak

^{38}, Steinar Stapnes

^{39}, Toshiaki Tauchi

^{40}, Nobu Toge

^{41}, Nicholas Walker

^{42}, Akira Yamamoto

^{43}, Kaoru Yokoya

^{44}

**Affiliations:**

^{1}SLAC,

^{2}Fermilab,

^{3}Caltech,

^{4}DESY,

^{5}University of Oxford, Particle Physics Department,

^{6}ANL,

^{7}Fermilab,

^{8}CERN,

^{9}Cornell University,

^{10}DESY,

^{11}KEK,

^{12}DESY,

^{13}KEK,

^{14}ANL,

^{15}CERN,

^{16}Jefferson Lab,

^{17}Fermilab,

^{18}LNF,

^{19}BNL,

^{20}KEK,

^{21}CERN,

^{22}KEK,

^{23}Fermilab,

^{24}DESY,

^{25}ANL,

^{26}KEK,

^{27}SLAC,

^{28}CERN,

^{29}Fermilab,

^{30}SLAC,

^{31}Fermilab,

^{32}SLAC,

^{33}INFN, Laboratorio LASA,

^{34}SLAC,

^{35}Cornell University,

^{36}University of Oxford,

^{37}SLAC,

^{38}Fermilab,

^{39}CERN,

^{40}KEK,

^{41}KEK,

^{42}DESY,

^{43}KEK,

^{44}KEK

**Category:**Physics - Accelerator Physics

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

**Authors:**Chris Adolphsen

^{1}, Maura Barone

^{2}, Barry Barish

^{3}, Karsten Buesser

^{4}, Philip Burrows

^{5}, John Carwardine

^{6}, Jeffrey Clark

^{7}, Hélène Mainaud Durand

^{8}, Gerry Dugan

^{9}, Eckhard Elsen

^{10}, Atsushi Enomoto

^{11}, Brian Foster

^{12}, Shigeki Fukuda

^{13}, Wei Gai

^{14}, Martin Gastal

^{15}, Rongli Geng

^{16}, Camille Ginsburg

^{17}, Susanna Guiducci

^{18}, Mike Harrison

^{19}, Hitoshi Hayano

^{20}, Keith Kershaw

^{21}, Kiyoshi Kubo

^{22}, Victor Kuchler

^{23}, Benno List

^{24}, Wanming Liu

^{25}, Shinichiro Michizono

^{26}, Christopher Nantista

^{27}, John Osborne

^{28}, Mark Palmer

^{29}, James McEwan Paterson

^{30}, Thomas Peterson

^{31}, Nan Phinney

^{32}, Paolo Pierini

^{33}, Marc Ross

^{34}, David Rubin

^{35}, Andrei Seryi

^{36}, John Sheppard

^{37}, Nikolay Solyak

^{38}, Steinar Stapnes

^{39}, Toshiaki Tauchi

^{40}, Nobu Toge

^{41}, Nicholas Walker

^{42}, Akira Yamamoto

^{43}, Kaoru Yokoya

^{44}

**Affiliations:**

^{1}SLAC,

^{2}Fermilab,

^{3}Caltech,

^{4}DESY,

^{5}University of Oxford, Particle Physics Department,

^{6}ANL,

^{7}Fermilab,

^{8}CERN,

^{9}Cornell University,

^{10}DESY,

^{11}KEK,

^{12}DESY,

^{13}KEK,

^{14}ANL,

^{15}CERN,

^{16}Jefferson Lab,

^{17}Fermilab,

^{18}LNF,

^{19}BNL,

^{20}KEK,

^{21}CERN,

^{22}KEK,

^{23}Fermilab,

^{24}DESY,

^{25}ANL,

^{26}KEK,

^{27}SLAC,

^{28}CERN,

^{29}Fermilab,

^{30}SLAC,

^{31}Fermilab,

^{32}SLAC,

^{33}INFN, Laboratorio LASA,

^{34}SLAC,

^{35}Cornell University,

^{36}University of Oxford,

^{37}SLAC,

^{38}Fermilab,

^{39}CERN,

^{40}KEK,

^{41}KEK,

^{42}DESY,

^{43}KEK,

^{44}KEK

**Category:**Physics - Accelerator Physics

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

**Authors:**P. Lebrun

^{1}, L. Linssen

^{2}, A. Lucaci-Timoce

^{3}, D. Schulte

^{4}, F. Simon

^{5}, S. Stapnes

^{6}, N. Toge

^{7}, H. Weerts

^{8}, J. Wells

^{9}

**Affiliations:**

^{1}CERN,

^{2}CERN,

^{3}CERN,

^{4}CERN,

^{5}CERN,

^{6}CERN,

^{7}KEK, Tsukuba,

^{8}Argonne,

^{9}eds

This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. Read More

This document provides input from the CLIC e+e- linear collider studies to the update process of the European Strategy for Particle Physics. It is submitted on behalf of the CLIC/CTF3 collaboration and the CLIC physics and detector study. It describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technique. Read More

The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. Read More

**Authors:**P. Czarapata

^{1}, D. Hartill

^{2}, S. Myers

^{3}, S. Peggs

^{4}, N. Phinney

^{5}, M. Serio

^{6}, N. Toge

^{7}, F. Willeke

^{8}, C. Zhang

^{9}

**Affiliations:**

^{1}FNAL,

^{2}Cornell,

^{3}CERN,

^{4}BNL,

^{5}SLAC,

^{6}INFN,

^{7}KEK,

^{8}DESY,

^{9}IHEP Beijing

**Category:**Physics - Accelerator Physics

A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, troubleshooting and repair. Experience from existing accelerators confirms that most of these activities are already performed 'remotely'. Read More

**Authors:**Paul Czarapata

^{1}, Don Hartill

^{2}, Steve Myers

^{3}, Stephen Peggs

^{4}, Nan Phinney

^{5}, Mario Serio

^{6}, Nobu Toge

^{7}, Ferdinand Willeke

^{8}, Chuan Zhang

^{9}

**Affiliations:**

^{1}FNAL,

^{2}Cornell,

^{3}CERN,

^{4}BNL,

^{5}SLAC,

^{6}INFN,

^{7}KEK,

^{8}DESY,

^{9}IHEP Beijing

**Category:**Physics - Accelerator Physics

In February 2000, the International Committee for Future Accelerators initiated a study of a new model for international collaboration on a future large accelerator project, the Global Accelerator Network. The study is based on a model of a facility, which is remote from most of the collaborating institutions. It is designed, built and operated by a collaboration of equal partner institutions distributed around the world. Read More

**Authors:**P. Czarapata

^{1}, D. Hartill

^{2}, S. Myers

^{3}, S. Peggs

^{4}, N. Phinney

^{5}, M. Serio

^{6}, N. Toge

^{7}, F. Willeke

^{8}, C. Zhang

^{9}

**Affiliations:**

^{1}FNAL,

^{2}Cornell,

^{3}CERN,

^{4}BNL,

^{5}SLAC,

^{6}INFN,

^{7}KEK,

^{8}DESY,

^{9}IHEP Beijing

**Category:**Computer Science - Other

A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commi-ssioning, machine development, maintenance, trouble shooting and repair. Experience from existing accele-rators confirms that most of these activities are already performed 'remotely'. Read More

**Authors:**J. W. Wang, C. Adolphsen, G. B. Bowden, D. L. Burke, J. Cornuelle, V. A. Dolgashev, W. B. Fowkes, R. K. Jobe, R. M. Jones, K. Ko, N. Kroll, Z. Li, R. J. Loewen, D. McCormick, R. H. Miller, C. K. Ng, C. Pearson, T. O. Raubenhemer, R. Reed, M. Ross, R. D. Ruth, T. Smith, G. Stupakov, T. Higo, Y. Funahashi, Y. Higashi, T. Higo, N. Hitomi, T. Suzuki, K. Takata, T. Takatomi, N. Toge, Y. Watanabe

**Category:**Physics - Accelerator Physics

As a joint effort in the JLC/NLC research program, we have developed a new type of damped detuned accelerator structure with optimized round-shaped cavities (RDDS). This paper discusses some important R&D aspects of the first structure in this series (RDDS1). The design aspects covered are the cell design with sub-MHz precision, HOM detuning, coupling and damping technique and wakefield simulation. Read More

**Authors:**R. M. Jones, T. Higo, Y. Higashi, N. Toge, N. M. Kroll, R. J. Loewen, R. H. Miller, J. W. Wang

**Category:**Physics - Accelerator Physics

In fabricating the first X-Band RDDS (Rounded Damped Detuned Structure) accelerator structure, microwave measurements are made on short groups of discs prior to bonding the discs of the entire structure. The design dispersion curves are compared with the frequency measurements. The theory utilised is based on a circuit model adapted to a short stack of slowly varying non-uniform discs. Read More

Following successful design and fabrication of damped detuned structures, the R&D for the accelerating structures of the NLC/JLC linear collider project proceeded to studies of Rounded Damped Detuned Structure with curved cross section of the cavity shape for increased shunt impedance. The important features of the structure are the accurately tuned accelerating mode frequency and the distribution of the first dipole modes smooth and close to the design distribution. These requirements were met based on the high-accuracy diamond turning with its capability to realize the periphery tolerance of two microns. Read More

The JLC is a linear collider project pursued in Japan by researchers centered around KEK. The R&D status for the JLC project is presented, with emphasis on recent results from ATF concerning studies of production of ultra-low emittance beams and from manufacturing research on X-band accelerator structures. Read More