N. J. Thompson

N. J. Thompson
Are you N. J. Thompson?

Claim your profile, edit publications, add additional information:

Contact Details

Name
N. J. Thompson
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Accelerator Physics (5)
 
Nuclear Experiment (4)
 
Physics - Optics (3)
 
Nuclear Theory (1)

Publications Authored By N. J. Thompson

The quenching of the experimental spectroscopic factor for proton emission from the short-lived $d_{3/2}$ isomeric state in $^{151m}$Lu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyv\"{a}skyl\"{a}. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15. Read More

The short wavelength and high peak power of the present generation of free-electron lasers (FELs) opens the possibility of ultra-short pulses even surpassing the present (tens to hundreds of attoseconds) capabilities of other light sources - but only if x-ray FELs can be made to generate pulses consisting of just a few optical cycles. For hard x-ray operation (~0.1nm), this corresponds to durations of approximately a single attosecond, and below into the zeptosecond scale. Read More

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

A method to achieve High-Brightness Self-Amplified Spontaneous Emission (HB-SASE) in the Free Electron Laser (FEL) is described. The method uses repeated non-equal electron beam delays to de-localise the collective FEL interaction and break the radiation coherence length dependence on the FEL cooperation length. The method requires no external seeding or photon optics and so is applicable at any wavelength or repetition rate. Read More

A method is proposed to generate trains of few-cycle x-ray pulses from a Free-Electron Laser (FEL) amplifier via a compact 'afterburner' extension consisting of several few-period undulator sections separated by electron chicane delays. Simulations show that in the hard x-ray (wavelength ~0.1 nm; photon energy ~10 keV) and with peak powers approaching normal FEL saturation (GW) levels, root mean square pulse durations of 700 zeptoseconds may be obtained. Read More

The yrast sequence of the neutron-rich dysprosium isotope 168Dy has been studied using multi-nucleon transfer reactions following collisions between a 460-MeV 82Se beam and a 170Er target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground state rotational band of 168Dy have been confirmed and the yrast band extended up to 10+. Read More

A model is presented which demonstrates that the attosecond pulse structure of a High Harmonic Generation (HHG) seed may be retained through to saturation in an FEL amplifier. At wavelengths of ~12nm a train of attosecond pulses of widths ~300 attoseconds with peak powers in excess of 1 GW are predicted from full 3D simulation. Methods for improving these results are discussed. Read More

In this paper we discuss extending the operating wavelength range of tunable Regenerative Amplifier FELs to shorter wavelengths than current design proposals, notably into the XUV regions of the spectrum and beyond where the reflectivity of broadband optics is very low. Simulation studies are presented which demonstrate the development of good temporal coherence in generic systems with a broadband radiation feedback of less than one part in ten thousand. Read More

A technique is proposed to generate attosecond pulse trains of radiation from a Free-Electron Laser amplifier. The optics-free technique synthesises a comb of longitudinal modes by applying a series of spatio-temporal shifts between the co-propagating radiation and electron bunch in the FEL. The modes may be phase-locked by modulating the electron beam energy at the mode spacing frequency. Read More