# Michael L. Honig

## Contact Details

NameMichael L. Honig |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesComputer Science - Information Theory (24) Mathematics - Information Theory (24) Computer Science - Networking and Internet Architecture (7) Computer Science - Computer Science and Game Theory (4) |

## Publications Authored By Michael L. Honig

Downlink beamforming techniques with low signaling overhead are proposed for joint processing coordinated (JP) multi-point transmission. The objective is to maximize the weighted sum rate within joint transmission clusters. As the considered weighted sum rate maximization is a non-convex problem, successive convex approximation techniques, based on weighted mean-squared error minimization, are applied to devise algorithms with tractable computational complexity. Read More

Recent initiatives by regulatory agencies to increase spectrum resources available for broadband access include rules for sharing spectrum with high-priority incumbents. We study a model in which wireless Service Providers (SPs) charge for access to their own exclusive-use (licensed) band along with access to an additional shared band. The total, or delivered price in each band is the announced price plus a congestion cost, which depends on the load, or total users normalized by the bandwidth. Read More

Heterogeneous wireless networks with small-cell deployments in licensed and unlicensed spectrum bands are a promising approach for expanding wireless connectivity and service. As a result, wireless service providers (SPs) are adding small-cells to augment their existing macro-cell deployments. This added flexibility complicates network management, in particular, service pricing and spectrum allocations across macro- and small-cells. Read More

Joint allocation of spectrum and user association is considered for a large cellular network. The objective is to optimize a network utility function such as average delay given traffic statistics collected over a slow timescale. A key challenge is scalability: given $n$ Access Points (APs), there are $O(2^n)$ ways in which the APs can share the spectrum. Read More

A scalable framework is developed to allocate radio resources across a large number of densely deployed small cells with given traffic statistics on a slow timescale. Joint user association and spectrum allocation is first formulated as a convex optimization problem by dividing the spectrum among all possible transmission patterns of active access points (APs). To improve scalability with the number of APs, the problem is reformulated using local patterns of interfering APs. Read More

Small-cell deployment in licensed and unlicensed spectrum is considered to be one of the key approaches to cope with the ongoing wireless data demand explosion. Compared to traditional cellular base stations with large transmission power, small-cells typically have relatively low transmission power, which makes them attractive for some spectrum bands that have strict power regulations, for example, the 3.5GHz band [1]. Read More

In massive multiple-input multiple-output (MIMO) systems, acquisition of the channel state information at the transmitter side (CSIT) is crucial. In this paper, a practical CSIT estimation scheme is proposed for frequency division duplexing (FDD) massive MIMO systems. Specifically, each received pilot symbol is first quantized to one bit per dimension at the receiver side and then the quantized bits are fed back to the transmitter. Read More

Small cells deployed in licensed spectrum and unlicensed access via WiFi provide different ways of expanding wireless services to low mobility users. That reduces the demand for conventional macro-cellular networks, which are better suited for wide-area mobile coverage. The mix of these technologies seen in practice depends in part on the decisions made by wireless service providers that seek to maximize revenue, and allocations of licensed and unlicensed spectrum by regulators. Read More

Next generation (5G) cellular networks are expected to be supported by an extensive infrastructure with many-fold increase in the number of cells per unit area compared to today. The total energy consumption of base transceiver stations (BTSs) is an important issue for both economic and environmental reasons. In this paper, an optimization-based framework is proposed for energy-efficient global radio resource management in heterogeneous wireless networks. Read More

There has been growing interest in increasing the amount of radio spectrum available for unlicensed broad-band wireless access. That includes "prime" spectrum at lower frequencies, which is also suitable for wide area coverage by licensed cellular providers. While additional unlicensed spectrum would allow for market expansion, it could influence competition among providers and increase congestion (interference) among consumers of wireless services. Read More

In future networks, an operator may employ a wide range of access points using diverse radio access technologies (RATs) over multiple licensed and unlicensed frequency bands. This paper studies centralized user association and spectrum allocation across many access points in such a heterogeneous network (HetNet). Such centralized control is on a relatively slow timescale to allow information exchange and joint optimization over multiple cells. Read More

We address the problem of uplink co-operative reception with constraints on both backhaul bandwidth and the receiver aperture, or number of antenna signals that can be processed. The problem is cast as a network utility (weighted sum rate) maximization subject to computational complexity and architectural bandwidth sharing constraints. We show that a relaxed version of the problem is convex, and can be solved via a dual-decomposition. Read More

Joint optimization of nonlinear precoders and receive filters is studied for both the uplink and downlink in a cellular system. For the uplink, the base transceiver station (BTS) receiver implements successive interference cancellation, and for the downlink, the BTS station pre-compensates for the interference with Tomlinson-Harashima precoding (THP). Convergence of alternating optimization of receivers and transmitters in a single cell is established when filters are updated according to a minimum mean squared error (MMSE) criterion, subject to appropriate power constraints. Read More

Next generation cellular networks will be heterogeneous with dense deployment of small cells in order to deliver high data rate per unit area. Traffic variations are more pronounced in a small cell, which in turn lead to more dynamic interference to other cells. It is crucial to adapt radio resource management to traffic conditions in such a heterogeneous network (HetNet). Read More

Facing the challenge of meeting ever-increasing demand for wireless data, the industry is striving to exploit large swaths of spectrum which anyone can use for free without having to obtain a license. Major standards bodies are currently considering a proposal to retool and deploy Long Term Evolution (LTE) technologies in unlicensed bands below 6 GHz. This paper studies the fundamental questions of whether and how the unlicensed spectrum can be shared by intrinsically strategic operators without suffering from the tragedy of the commons. Read More

Most work on wireless network resource allocation use physical layer performance such as sum rate and outage probability as the figure of merit. These metrics may not reflect the true user QoS in future heterogenous networks (HetNets) with many small cells, due to large traffic variations in overlapping cells with complicated interference conditions. This paper studies the spectrum allocation problem in HetNets using the average packet sojourn time as the performance metric. Read More

Collisions with hidden terminals is a major cause of performance degradation in 802.11 and likewise wireless networks. Carrier sense multiple access with collision avoidance (CSMA/CA) is utilized to avoid collisions at the cost of spatial reuse. Read More

Multicell joint processing can mitigate inter-cell interference and thereby increase the spectral efficiency of cellular systems. Most previous work has assumed phase-aligned (coherent) transmissions from different base transceiver stations (BTSs), which is difficult to achieve in practice. In this work, a noncoherent cooperative transmission scheme for the downlink is studied, which does not require phase alignment. Read More

We study distributed algorithms for adjusting beamforming vectors and receiver filters in multiple-input multiple-output (MIMO) interference networks, with the assumption that each user uses a single beam and a linear filter at the receiver. In such a setting there have been several distributed algorithms studied for maximizing the sum-rate or sum-utility assuming perfect channel state information (CSI) at the transmitters and receivers. The focus of this paper is to study adaptive algorithms for time-varying channels, without assuming any CSI at the transmitters or receivers. Read More

We examine the capacity of beamforming over a single-user, multi-antenna link taking into account the overhead due to channel estimation and limited feedback of channel state information. Multi-input single-output (MISO) and multi-input multi-output (MIMO) channels are considered subject to block Rayleigh fading. Each coherence block contains $L$ symbols, and is spanned by $T$ training symbols, $B$ feedback bits, and the data symbols. Read More

We consider data transmission through a time-selective, correlated (first-order Markov) Rayleigh fading channel subject to an average power constraint. The channel is estimated at the receiver with a pilot signal, and the estimate is fed back to the transmitter. The estimate is used for coherent demodulation, and to adapt the data and pilot powers. Read More

Channel uncertainty and co-channel interference are two major challenges in the design of wireless systems such as future generation cellular networks. This paper studies receiver design for a wireless channel model with both time-varying Rayleigh fading and strong co-channel interference of similar form as the desired signal. It is assumed that the channel coefficients of the desired signal can be estimated through the use of pilots, whereas no pilot for the interference signal is available, as is the case in many practical wireless systems. Read More

The capacity of a fading channel can be substantially increased by feeding back channel state information from the receiver to the transmitter. With limited-rate feedback what state information to feed back and how to encode it are important open questions. This paper studies power loading in a multicarrier system using no more than one bit of feedback per sub-channel. Read More

Given a multiple-input multiple-output (MIMO) channel, feedback from the receiver can be used to specify a transmit precoding matrix, which selectively activates the strongest channel modes. Here we analyze the performance of Random Vector Quantization (RVQ), in which the precoding matrix is selected from a random codebook containing independent, isotropically distributed entries. We assume that channel elements are i. Read More

This paper uses an incremental matrix expansion approach to derive asymptotic eigenvalue distributions (a.e.d. Read More

We present a unified large system analysis of linear receivers for a class of random matrix channels. The technique unifies the analysis of both the minimum-mean-squared-error (MMSE) receiver and the adaptive least-squares (ALS) receiver, and also uses a common approach for both random i.i. Read More