Michael Dinitz

Michael Dinitz
Are you Michael Dinitz?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Michael Dinitz
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Data Structures and Algorithms (15)
 
Mathematics - Combinatorics (5)
 
Computer Science - Distributed; Parallel; and Cluster Computing (3)
 
Computer Science - Computational Complexity (2)
 
Computer Science - Computer Science and Game Theory (2)
 
Computer Science - Networking and Internet Architecture (1)
 
Mathematics - Optimization and Control (1)

Publications Authored By Michael Dinitz

Graph spanners have been studied extensively, and have many applications in algorithms, distributed systems, and computer networks. For many of these application, we want distributed constructions of spanners, i.e. Read More

The capacity of wireless networks is a classic and important topic of study. Informally, the capacity of a network is simply the total amount of information which it can transfer. In the context of models of wireless radio networks, this has usually meant the total number of point-to-point messages which can be sent or received in one time step. Read More

Given a finite metric space $(V,d)$, an approximate distance oracle is a data structure which, when queried on two points $u,v \in V$, returns an approximation to the the actual distance between $u$ and $v$ which is within some bounded stretch factor of the true distance. There has been significant work on the tradeoff between the important parameters of approximate distance oracles (and in particular between the size, stretch, and query time), but in this paper we take a different point of view, that of per-instance optimization. If we are given an particular input metric space and stretch bound, can we find the smallest possible approximate distance oracle for that particular input? Since this question is not even well-defined, we restrict our attention to well-known classes of approximate distance oracles, and study whether we can optimize over those classes. Read More

In the Minimum k-Union problem (MkU) we are given a set system with n sets and are asked to select k sets in order to minimize the size of their union. Despite being a very natural problem, it has received surprisingly little attention: the only known approximation algorithm is an $O(\sqrt{n})$-approximation due to [Chlamt\'a\v{c} et al APPROX '16]. This problem can also be viewed as the bipartite version of the Small Set Vertex Expansion problem (SSVE), which we call the Small Set Bipartite Vertex Expansion problem (SSBVE). Read More

We revisit the classical question of the relationship between the diameter of a graph and its expansion properties. One direction is well understood: expander graphs exhibit essentially the lowest possible diameter. We focus on the reverse direction. Read More

It was recently found that there are very close connections between the existence of additive spanners (subgraphs where all distances are preserved up to an additive stretch), distance preservers (subgraphs in which demand pairs have their distance preserved exactly), and pairwise spanners (subgraphs in which demand pairs have their distance preserved up to a multiplicative or additive stretch) [Abboud-Godwin SODA '16, Godwin-Williams SODA '16]. We study these problems from an optimization point of view, where rather than studying the existence of extremal instances we are given an instance and are asked to find the sparsest possible spanner/preserver. We give an $O(n^{3/5 + \epsilon})$-approximation for distance preservers and pairwise spanners (for arbitrary constant $\epsilon > 0$). Read More

The Densest $k$-Subgraph (D$k$S) problem, and its corresponding minimization problem Smallest $p$-Edge Subgraph (S$p$ES), have come to play a central role in approximation algorithms. This is due both to their practical importance, and their usefulness as a tool for solving and establishing approximation bounds for other problems. These two problems are not well understood, and it is widely believed that they do not an admit a subpolynomial approximation ratio (although the best known hardness results do not rule this out). Read More

We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. Read More

We generalize the technique of smoothed analysis to distributed algorithms in dynamic network models. Whereas standard smoothed analysis studies the impact of small random perturbations of input values on algorithm performance metrics, dynamic graph smoothed analysis studies the impact of random perturbations of the underlying changing network graph topologies. Similar to the original application of smoothed analysis, our goal is to study whether known strong lower bounds in dynamic network models are robust or fragile: do they withstand small (random) perturbations, or do such deviations push the graphs far enough from a precise pathological instance to enable much better performance? Fragile lower bounds are likely not relevant for real-world deployment, while robust lower bounds represent a true difficulty caused by dynamic behavior. Read More

Deterministic constructions of expander graphs have been an important topic of research in computer science and mathematics, with many well-studied constructions of infinite families of expanders. In some applications, though, an infinite family is not enough: we need expanders which are "close" to each other. We study the following question: Construct an an infinite sequence of expanders $G_0,G_1,\dots$, such that for every two consecutive graphs $G_i$ and $G_{i+1}$, $G_{i+1}$ can be obtained from $G_i$ by adding a single vertex and inserting/removing a small number of edges, which we call the expansion cost of transitioning from $G_i$ to $G_{i+1}$. Read More

We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a $(1+\epsilon)$-resistance sparsifier of size $\tilde O(n/\epsilon)$, and conjecture this bound holds for all graphs on $n$ nodes. In comparison, spectral sparsification is a strictly stronger notion and requires $\Omega(n/\epsilon^2)$ edges even on the complete graph. Read More

When comparing new wireless technologies, it is common to consider the effect that they have on the capacity of the network (defined as the maximum number of simultaneously satisfiable links). For example, it has been shown that giving receivers the ability to do interference cancellation, or allowing transmitters to use power control, never decreases the capacity and can in certain cases increase it by $\Omega(\log (\Delta \cdot P_{\max}))$, where $\Delta$ is the ratio of the longest link length to the smallest transmitter-receiver distance and $P_{\max}$ is the maximum transmission power. But there is no reason to expect the optimal capacity to be realized in practice, particularly since maximizing the capacity is known to be NP-hard. Read More

In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assumption that decisions are irrevocable: if we choose to accept an element when it is presented by the stream then we can never get rid of it, and if we choose not to accept it then we cannot later add it. Babaioff, Immorlica, and Kleinberg [SODA 2007] introduced this problem, gave O(1)-competitive algorithms for certain classes of matroids, and conjectured that every matroid admits an O(1)-competitive algorithm. Read More

The significant progress in constructing graph spanners that are sparse (small number of edges) or light (low total weight) has skipped spanners that are everywhere-sparse (small maximum degree). This disparity is in line with other network design problems, where the maximum-degree objective has been a notorious technical challenge. Our main result is for the Lowest Degree 2-Spanner (LD2S) problem, where the goal is to compute a 2-spanner of an input graph so as to minimize the maximum degree. Read More

We study the well-known Label Cover problem under the additional requirement that problem instances have large girth. We show that if the girth is some $k$, the problem is roughly $2^{\log^{1-\epsilon} n/k}$ hard to approximate for all constant $\epsilon > 0$. A similar theorem was claimed by Elkin and Peleg [ICALP 2000], but their proof was later found to have a fundamental error. Read More

Distance computation is one of the most fundamental primitives used in communication networks. The cost of effectively and accurately computing pairwise network distances can become prohibitive in large-scale networks such as the Internet and Peer-to-Peer (P2P) networks. To negotiate the rising need for very efficient distance computation, approximation techniques for numerous variants of this question have recently received significant attention in the literature. Read More

We initiate the theoretical study of the problem of minimizing the size of an iBGP overlay in an Autonomous System (AS) in the Internet subject to a natural notion of correctness derived from the standard "hot-potato" routing rules. For both natural versions of the problem (where we measure the size of an overlay by either the number of edges or the maximum degree) we prove that it is NP-hard to approximate to a factor better than $\Omega(\log n)$ and provide approximation algorithms with ratio $\tilde{O}(\sqrt{n})$. In addition, we give a slightly worse $\tilde{O}(n^{2/3})$-approximation based on primal-dual techniques that has the virtue of being both fast and good in practice, which we show via simulations on the actual topologies of five large Autonomous Systems. Read More

A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults $r$, for all stretch bounds. For stretch $k \geq 3$ we design a simple transformation that converts every $k$-spanner construction with at most $f(n)$ edges into an $r$-fault-tolerant $k$-spanner construction with at most $O(r^3 \log n) \cdot f(2n/r)$ edges. Read More

We examine directed spanners through flow-based linear programming relaxations. We design an $\~O(n^{2/3})$-approximation algorithm for the directed $k$-spanner problem that works for all $k\geq 1$, which is the first sublinear approximation for arbitrary edge-lengths. Even in the more restricted setting of unit edge-lengths, our algorithm improves over the previous $\~O(n^{1-1/k})$ approximation of Bhattacharyya et al. Read More