Mattia Fornasa - Instituto de Astrofisica de Andalucia IAA-CSIC

Mattia Fornasa
Are you Mattia Fornasa?

Claim your profile, edit publications, add additional information:

Contact Details

Mattia Fornasa
Instituto de Astrofisica de Andalucia IAA-CSIC

Pubs By Year

External Links

Pub Categories

Cosmology and Nongalactic Astrophysics (12)
High Energy Physics - Phenomenology (9)
High Energy Astrophysical Phenomena (6)
Astrophysics (3)

Publications Authored By Mattia Fornasa

After the discovery of extraterrestrial high-energy neutrinos, the next major goal of neutrino telescopes will be identifying astrophysical objects that produce them. However, the flux of the brightest source $F_{\rm max}$ cannot be probed by studying the diffuse neutrino intensity. We aim at constraining $F_{\rm max}$ by adopting a broken power-law flux distribution, a hypothesis supported by the observed properties of any generic astrophysical sources. Read More

We measure the cross-correlation between Fermi-LAT gamma-ray photons and over 1000 deg$^2$ of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. Read More

The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. Read More

When comparing constraints on the Weakly Interacting Massive Particle (WIMP) properties from direct and indirect detection experiments it is crucial that the assumptions made about the dark matter (DM) distribution are realistic and consistent. For instance, if the Fermi-LAT Galactic centre GeV gamma-ray excess was due to WIMP annihilation, its morphology would be incompatible with the Standard Halo Model that is usually used to interpret data from direct detection experiments. In this article, we calculate exclusion limits from direct detection experiments using self-consistent velocity distributions, derived from mass models of the Milky Way where the DM halo has a generalized NFW profile. Read More

We review the current understanding of the diffuse gamma-ray background (DGRB). The DGRB is what remains of the total measured gamma-ray emission after the subtraction of the resolved sources and of the diffuse Galactic foregrounds. It is interpreted as the cumulative emission of sources that are not bright enough to be detected individually. Read More

We recently proposed to cross-correlate the diffuse extragalactic gamma-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Read More

With positive signals from multiple direct detection experiments it will, in principle, be possible to measure the mass and cross sections of weakly-interacting massive particle (WIMP) dark matter. Recent work has shown that, with a polynomial parameterisation of the WIMP speed distribution, it is possible to make an unbiased measurement of the WIMP mass, without making any astrophysical assumptions. However, direct detection experiments are not sensitive to low-speed WIMPs and, therefore, any model-independent approach will lead to a bias in the cross section. Read More

Dark Matter (DM) direct detection experiments usually assume the simplest possible 'Standard Halo Model' for the Milky Way (MW) halo in which the velocity distribution is Maxwellian. This model assumes that the MW halo is an isotropic, isothermal sphere, hypotheses that are unlikely to be valid in reality. An alternative approach is to derive a self-consistent solution for a particular mass model of the MW (i. Read More

We study the effect that uncertainties in the nuclear spin-dependent structure functions have in the determination of the dark matter (DM) parameters in a direct detection experiment. We show that different nuclear models that describe the spin-dependent structure function of specific target nuclei can lead to variations in the reconstructed values of the DM mass and scattering cross-section. We propose a parametrization of the spin structure functions that allows us to treat these uncertainties as variations of three parameters, with a central value and deviation that depend on the specific nucleus. Read More

The Fermi-LAT collaboration has recently reported the detection of angular power above the photon noise level in the diffuse gamma-ray background between 1 and 50 GeV. Such signal can be used to constrain a possible contribution from Dark-Matter-induced photons. We estimate the intensity and features of the angular power spectrum (APS) of this potential Dark Matter (DM) signal, for both decaying and annihilating DM candidates, by constructing template all-sky gamma-ray maps for the emission produced in the galactic halo and its substructures, as well as in extragalactic (sub)halos. Read More

Affiliations: 1Instituto de Astrofisica de Andalucia IAA-CSIC, 2Department of Physics and Astrophysics, University of Waterloo, 3KIPAC - SLAC National Accelerator Laboratory, 4Instituto de Astrofisica de Andalucia IAA-CSIC, 5Harvard-Smithsonian Center for Astrophysics

For the first time, the Fermi-LAT measured the angular power spectrum (APS) of anisotropies in the diffuse gamma-ray background. The data is found to be broadly compatible with a model with contributions from the point sources in the 1-year catalog, the galactic diffuse background, and the extragalactic isotropic emission; however deviations are present at both large and small angular scales. In this study, we complement the model with a contribution from Dark Matter (DM) whose distribution is modeled exploiting the results of the most recent N-body simulations, considering the contribution of extragalactic halos and subhalos (from Millennium-II) and of galactic substructures (from Aquarius). Read More

In this work, starting from 21 months of data from the Fermi-Large Area Telescope, we derive maps of the residual isotropic gamma-ray emission, a relevant fraction of which is expected to be contributed by the extragalactic diffuse gamma-ray background. We compute the angular two-point auto-correlation function of the residual Fermi-LAT maps at energies E>1GeV, E>3GeV and E>30GeV well above the Galactic plane and find no significant correlation signal. This is, indeed, what is expected if the EGB were contributed by BL Lacertae, Flat Spectrum Radio Quasars or star-forming galaxies, since, in this case, the predicted signal is very weak. Read More

Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if Weakly Interacting Massive Particles (WIMPs) are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe. We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection (DD) data, by making a simple Ansatz on the WIMP local density, i. Read More

The formation and evolution of Black Holes inevitably affects the distribution of dark and baryonic matter in the neighborhood of the Black Hole. These effects may be particularly relevant around Supermassive and Intermediate Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite being larger and more dense, spikes evolve at the very centers of galactic halos, in regions where numerous dynamical effects tend to destroy them. Read More

We study the flux and the angular power spectrum of gamma-rays produced by Dark Matter (DM) annihilations in the Milky Way (MW) and in extra-galactic halos. The annihilation signal receives contributions from: a) the smooth MW halo, b) resolved and unresolved substructures in the MW, c) external DM halos at all redshifts, including d) their substructures. Adopting a self-consistent description of local and extra-galactic substructures, we show that the annihilation flux from substructures in the MW dominates over all the other components for angles larger than O(1) degrees from the Galactic Center, unless an extreme prescription is adopted for the substructures concentration. Read More

The next generation of ground-based Imaging Air Cherenkov Telescopes (IACTs) will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such a study, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux at the high energies where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. Read More


We review the consequences of the growth and evolution of Black Holes on the distribution of stars and Dark Matter (DM) around them. We focus in particular on Supermassive and Intermediate Mass Black Holes, and discuss under what circumstances they can lead to significant overdensities in the surrounding distribution of DM, thus effectively acting as DM annihilation boosters. Read More

The existence of a population of wandering Intermediate Mass Black Holes (IMBHs) is a generic prediction of scenarios that seek to explain the formation of Supermassive Black Holes in terms of growth from massive seeds. The growth of IMBHs may lead to the formation of DM overdensities called "mini-spikes", recently proposed as ideal targets for indirect DM searches. Current ground-based gamma-ray experiments, however, cannot search for these objects due to their limited field of view, and it might be challenging to discriminate mini-spikes in the Milky Way from the many astrophysical sources that GLAST is expected to observe. Read More