Matthew T. Penny - OSU

Matthew T. Penny
Are you Matthew T. Penny?

Claim your profile, edit publications, add additional information:

Contact Details

Matthew T. Penny

Pubs By Year

Pub Categories

Earth and Planetary Astrophysics (24)
Solar and Stellar Astrophysics (4)
Astrophysics of Galaxies (4)
Instrumentation and Methods for Astrophysics (1)

Publications Authored By Matthew T. Penny

Planets are thought to form via accretion from a remnant disk of gas and solids around a newly formed star. During this process material in the disk either remains bound to the star as part of either a planet, a smaller celestial body, or makes up part of the interplanetary medium; falls into the star; or is ejected from the system. Herein we use dynamical models to probe the abundance and properties of ejected material during late-stage planet formation and estimate their contribution to the free-floating planet population. Read More

We report the discovery of a microlensing planet --- MOA-2016-BLG-227Lb --- with a large planet/host mass ratio of $q \simeq 9 \times 10^{-3}$. This event was located near the $K2$ Campaign 9 field that was observed by a large number of telescopes. As a result, the event was in the microlensing survey area of a number of these telescopes, and this enabled good coverage of the planetary light curve signal. Read More

Authors: L. Pei, M. M. Fausnaugh, A. J. Barth, B. M. Peterson, M. C. Bentz, G. De Rosa, K. D. Denney, M. R. Goad, C. S. Kochanek, K. T. Korista, G. A. Kriss, R. W. Pogge, V. N. Bennert, M. Brotherton, K. I. Clubb, E. Dalla Bontà, A. V. Filippenko, J. E. Greene, C. J. Grier, M. Vestergaard, W. Zheng, Scott M. Adams, Thomas G. Beatty, A. Bigley, Jacob E. Brown, Jonathan S. Brown, G. Canalizo, J. M. Comerford, Carl T. Coker, E. M. Corsini, S. Croft, K. V. Croxall, A. J. Deason, Michael Eracleous, O. D. Fox, E. L. Gates, C. B. Henderson, E. Holmbeck, T. W. -S. Holoien, J. J. Jensen, C. A. Johnson, P. L. Kelly, S. Kim, A. King, M. W. Lau, Miao Li, Cassandra Lochhaas, Zhiyuan Ma, E. R. Manne-Nicholas, J. C. Mauerhan, M. A. Malkan, R. McGurk, L. Morelli, Ana Mosquera, Dale Mudd, F. Muller Sanchez, M. L. Nguyen, P. Ochner, B. Ou-Yang, A. Pancoast, Matthew T. Penny, A. Pizzella, Radosław Poleski, Jessie Runnoe, B. Scott, Jaderson S. Schimoia, B. J. Shappee, I. Shivvers, Gregory V. Simonian, A. Siviero, Garrett Somers, Daniel J. Stevens, M. A. Strauss, Jamie Tayar, N. Tejos, T. Treu, J. Van Saders, L. Vican, S. Villanueva Jr., H. Yuk, N. L. Zakamska, W. Zhu, M. D. Anderson, P. Arévalo, C. Bazhaw, S. Bisogni, G. A. Borman, M. C. Bottorff, W. N. Brandt, A. A. Breeveld, E. M. Cackett, M. T. Carini, D. M. Crenshaw, A. De Lorenzo-Cáceres, M. Dietrich, R. Edelson, N. V. Efimova, J. Ely, P. A. Evans, G. J. Ferland, K. Flatland, N. Gehrels, S. Geier, J. M. Gelbord, D. Grupe, A. Gupta, P. B. Hall, S. Hicks, D. Horenstein, Keith Horne, T. Hutchison, M. Im, M. D. Joner, J. Jones, J. Kaastra, S. Kaspi, B. C. Kelly, J. A. Kennea, M. Kim, S. C. Kim, S. A. Klimanov, J. C. Lee, D. C. Leonard, P. Lira, F. MacInnis, S. Mathur, I. M. McHardy, C. Montouri, R. Musso, S. V. Nazarov, H. Netzer, R. P. Norris, J. A. Nousek, D. N. Okhmat, I. Papadakis, J. R. Parks, J. -U. Pott, S. E. Rafter, H. -W. Rix, D. A. Saylor, K. Schnülle, S. G. Sergeev, M. Siegel, A. Skielboe, M. Spencer, D. Starkey, H. -I. Sung, K. G. Teems, C. S. Turner, P. Uttley, C. Villforth, Y. Weiss, J. -H. Woo, H. Yan, S. Young, Y. Zu

We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multi-wavelength reverberation mapping campaign. The campaign spanned six months and achieved an almost daily cadence with observations from five ground-based telescopes. The H$\beta$ and He II $\lambda$4686 broad emission-line light curves lag that of the 5100 $\AA$ optical continuum by $4. Read More

The WFIRST microlensing mission will measure precise light curves and relative parallaxes for millions of stars, giving it the potential to characterize short-period transiting planets all along the line of sight and into the galactic bulge. These light curves will enable the detection of more than 100,000 transiting planets whose host stars have measured distances. Although most of these planets cannot be followed up, several thousand hot Jupiters can be confirmed directly by detection of their secondary eclipses in the WFIRST data. Read More

We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a "changing look" AGN and a broad-line radio galaxy. Based on continuum-H$\beta$ lags, we measure black hole masses for all five targets. Read More

We report the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting a mildly evolved host star. We identified the initial transit signal in the KELT-North survey data and established the planetary nature of the companion through precise follow-up photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the $V = 10. Read More

K2 Campaign 9 (K2C9) offers the first chance to measure parallaxes and masses of members of the large population of free-floating planets (FFPs) that has previously been inferred from measurements of the rate of short-timescale microlensing events. Using detailed simulations of the nominal campaign (ignoring the loss of events due to Kepler's emergency mode) and ground-based microlensing surveys, we predict the number of events that can be detected if there is a population of 1-Jupiter-mass FFPs matching current observational constraints. Using a Fisher matrix analysis we also estimate the number of detections for which it will be possible to measure the microlensing parallax, angular Einstein radius and FFP mass. Read More

Considering a sample of 31 exoplanetary systems detected by gravitational microlensing, we investigate whether or not the estimated distances to these systems conform to the Galactic distribution of planets expected from models. We derive the expected distribution of distances and relative proper motions from a simulated microlensing survey, correcting for the dominant selection effects that affect the planet detection sensitivity as a function of distance, and compare it to the observed distribution using Anderson-Darling (AD) hypothesis testing. Taking the relative abundance of planets in the bulge to that in the disk, $f_{\rm bulge}$, as a model parameter, we find that our model is only consistent with the observed distribution for $f_{\rm bulge}<0. Read More

Authors: Calen B. Henderson, Radosław Poleski, Matthew Penny, Rachel A. Street, David P. Bennett, David W. Hogg, B. Scott Gaudi, W. Zhu, T. Barclay, G. Barentsen, S. B. Howell, F. Mullally, A. Udalski, M. K. Szymański, J. Skowron, P. Mróz, S. Kozłowski, Ł. Wyrzykowski, P. Pietrukowicz, I. Soszyński, K. Ulaczyk, M. Pawlak, T. Sumi, F. Abe, Y. Asakura, R. K. Barry, A. Bhattacharya, I. A. Bond, M. Donachie, M. Freeman, A. Fukui, Y. Hirao, Y. Itow, N. Koshimoto, M. C. A. Li, C. H. Ling, K. Masuda, Y. Matsubara, Y. Muraki, M. Nagakane, K. Ohnishi, H. Oyokawa, N. Rattenbury, To. Saito, A. Sharan, D. J. Sullivan, P. J. Tristram, A. Yonehara, E. Bachelet, D. M. Bramich, A. Cassan, M. Dominik, R. Figuera Jaimes, K. Horne, M. Hundertmark, S. Mao, C. Ranc, R. Schmidt, C. Snodgrass, I. A. Steele, Y. Tsapras, J. Wambsganss, V. Bozza, M. J. Burgdorf, U. G. Jørgensen, S. Calchi Novati, S. Ciceri, G. D'Ago, D. F. Evans, F. V. Hessman, T. C. Hinse, T. -O. Husser, L. Mancini, A. Popovas, M. Rabus, S. Rahvar, G. Scarpetta, J. Skottfelt, J. Southworth, E. Unda-Sanzana, S. T. Bryson, D. A. Caldwell, M. R. Haas, K. Larson, K. McCalmont, M. Packard, C. Peterson, D. Putnam, L. Reedy, S. Ross, J. E. Van Cleve, R. Akeson, V. Batista, J. -P. Beaulieu, C. A. Beichman, G. Bryden, D. Ciardi, A. Cole, C. Coutures, D. Foreman-Mackey, P. Fouqué, M. Friedmann, C. Gelino, S. Kaspi, E. Kerins, H. Korhonen, D. Lang, C. -H. Lee, C. H. Lineweaver, D. Maoz, J. -B. Marquette, F. Mogavero, J. C. Morales, D. Nataf, R. W. Pogge, A. Santerne, Y. Shvartzvald, D. Suzuki, M. Tamura, P. Tisserand, D. Wang

$K2$'s Campaign 9 ($K2$C9) will conduct a $\sim$3.7 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $\pi_{\rm E}$ for $\gtrsim$127 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). Read More

Recent discoveries of circumbinary planets in Kepler data show that there is a viable channel of planet formation around binary main sequence stars. Motivated by these discoveries, we have investigated the caustic structures and detectability of circumbinary planets in microlensing events. We have produced a suite of animations of caustics as a function of the projected separation and angle of the binary host to efficiently explore caustic structures over the entire circumbinary parameter space. Read More

To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. Read More

Space-based microlens parallax measurements are a powerful tool for understanding planet populations, especially their distribution throughout the Galaxy. However, if space-based observations of the microlensing events must be specifically targeted, it is crucial that microlensing events enter the parallax sample without reference to the known presence or absence of planets. Hence, it is vital to define objective criteria for selecting events where possible and to carefully consider and minimize the selection biases where not possible so that the final sample represents a controlled experiment. Read More

NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission. Read More

We undertake the first study of two-planet microlensing models recovered from simulations of microlensing events generated by realistic multi-planet systems in which 292 planetary events including 16 two-planet events were detected from 6690 simulated light curves. We find that when two planets are recovered, their parameters are usually close to those of the two planets in the system most responsible for the perturbations. However, in one of the 16 examples, the apparent mass of both detected planets was more than doubled by the unmodeled influence of a third, massive planet. Read More

The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6m telescopes each with a 4 deg^{2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Read More

We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_\odot$ stars. Read More

Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such computations is the computation of lightcurves. However, for low-mass planets most of these computations are wasteful, as most lightcurves do not contain detectable planetary signatures. Read More

We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V=10. Read More

We discuss scientific, technical and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call "NEW WFIRST," would achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. Read More

We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that suggests planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Read More

Microlensing is most sensitive to binary lenses with relatively large orbital separations, and as such, typical binary microlensing events show little or no orbital motion during the event. However, despite the strength of binary microlensing features falling off rapidly as the lens separation decreases, we show that it is possible to detect repeating features in the lightcurve of binary microlenses that complete several orbits during the microlensing event. We investigate the lightcurve features of such Rapidly Rotating Lens (RRL) events. Read More

A standard binary microlensing event lightcurve allows just two parameters of the lensing system to be measured: the mass ratio of the companion to its host, and the projected separation of the components in units of the Einstein radius. However, other exotic effects can provide more information about the lensing system. Orbital motion in the lens is one such effect, which if detected, can be used to constrain the physical properties of the lens. Read More