Mathieu Aubry

Mathieu Aubry
Are you Mathieu Aubry?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Mathieu Aubry
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (5)
 
Computer Science - Neural and Evolutionary Computing (3)
 
Computer Science - Learning (3)

Publications Authored By Mathieu Aubry

Convolutional Neural Networks (CNNs) were recently shown to provide state-of-the-art results for object category viewpoint estimation. However different ways of formulating this problem have been proposed and the competing approaches have been explored with very different design choices. This paper presents a comparison of these approaches in a unified setting as well as a detailed analysis of the key factors that impact performance. Read More

Discriminative deep learning approaches have shown impressive results for problems where human-labeled ground truth is plentiful, but what about tasks where labels are difficult or impossible to obtain? This paper tackles one such problem: establishing dense visual correspondence across different object instances. For this task, although we do not know what the ground-truth is, we know it should be consistent across instances of that category. We exploit this consistency as a supervisory signal to train a convolutional neural network to predict cross-instance correspondences between pairs of images depicting objects of the same category. Read More

This paper presents an end-to-end convolutional neural network (CNN) for 2D-3D exemplar detection. We demonstrate that the ability to adapt the features of natural images to better align with those of CAD rendered views is critical to the success of our technique. We show that the adaptation can be learned by compositing rendered views of textured object models on natural images. Read More

We introduce an approach for analyzing the variation of features generated by convolutional neural networks (CNNs) with respect to scene factors that occur in natural images. Such factors may include object style, 3D viewpoint, color, and scene lighting configuration. Our approach analyzes CNN feature responses corresponding to different scene factors by controlling for them via rendering using a large database of 3D CAD models. Read More

In this paper we study the application of convolutional neural networks for jointly detecting objects depicted in still images and estimating their 3D pose. We identify different feature representations of oriented objects, and energies that lead a network to learn this representations. The choice of the representation is crucial since the pose of an object has a natural, continuous structure while its category is a discrete variable. Read More