# Martin Rumpf

## Contact Details

NameMartin Rumpf |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesMathematics - Numerical Analysis (18) Computer Science - Computer Vision and Pattern Recognition (2) Physics - Computational Physics (1) Computer Science - Computational Geometry (1) Mathematics - Optimization and Control (1) Mathematics - Analysis of PDEs (1) |

## Publications Authored By Martin Rumpf

Splines and subdivision curves are flexible tools in the design and manipulation of curves in Euclidean space. In this paper we study generalizations of interpolating splines and subdivision schemes to the Riemannian manifold of shell surfaces in which the associated metric measures both bending and membrane distortion. The shells under consideration are assumed to be represented by Loop subdivision surfaces. Read More

We present a generalized optimal transport model in which the mass-preserving constraint for the $L^2$-Wasserstein distance is relaxed by introducing a source term in the continuity equation. The source term is also incorporated in the path energy by means of its squared $L^2$-norm in time of a functional with linear growth in space. This extension of the original transport model enables local density modulation, which is a desirable feature in applications such as image warping and blending. Read More

This paper deals with shape optimization for elastic materials under stochastic loads. It transfers the paradigm of stochastic dominance, which allows for flexible risk aversion via comparison with benchmark random variables, from finite-dimensional stochastic programming to shape optimization. Rather than handling risk aversion in the objective, this enables risk aversion by including dominance constraints that single out subsets of nonanticipative shapes which compare favorably to a chosen stochastic benchmark. Read More

We consider the problem of an optimal distribution of soft and hard material for nonlinearly elastic planar beams. We prove that under gravitational force the optimal distribution involves no microstructure and is ordered, and we provide numerical simulations confirming and extending this observation. Read More

Branching can be observed at the austenite-martensite interface of martensitic phase transformations. For a model problem, Kohn and M\"uller studied a branching pattern with optimal scaling of the energy with respect to its parameters. Here, we present finite element simulations that suggest a topologically different class of branching patterns and derive a novel, low dimensional family of patterns. Read More

The design of optimal composite elastic materials within a two-scale linearized elasticity model is studied in this paper. We consider a mechanically simple, constructible parametrized microscopic supporting structure, whose parameters are determined minimizing the compliance objective. Nested laminates are known to realize the minimal compliance and provide a benchmark for the quality of the microstructures. Read More

A shape sensitive, variational approach for the matching of surfaces considered as thin elastic shells is investigated. The elasticity functional to be minimized takes into account two different types of nonlinear energies: a membrane energy measuring the rate of tangential distortion when deforming the reference shell into the template shell, and a bending energy measuring the bending under the deformation in terms of the change of the shape operators from the undeformed into the deformed configuration. The variational method applies to surfaces described as level sets. Read More

The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the $L^2$-norm. Read More

In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Read More

The estimation of motion in an image sequence is a fundamental task in image processing. Frequently, the image sequence is corrupted by noise and one simultaneously asks for the underlying motion field and a restored sequence. In smoothly shaded regions of the restored image sequence the brightness constancy assumption along motion paths leads to a pointwise differential condition on the motion field. Read More

A variational time discretization of anisotropic Willmore flow combined with a spatial discretization via piecewise affine finite elements is presented. Here, both the energy and the metric underlying the gradient flow are anisotropic, which in particular ensures that Wulff shapes are invariant up to scaling under the gradient flow. In each time step of the gradient flow a nested optimization problem has to be solved. Read More

Subdivision surfaces are proven to be a powerful tool in geometric modeling and computer graphics, due to the great flexibility they offer in capturing irregular topologies. This paper discusses the robust and efficient implementation of an isogeometric discretization approach to partial differential equations on surfaces using subdivision methodology. Elliptic equations with the Laplace-Beltrami and the surface bi-Laplacian operator as well as the associated eigenvalue problems are considered. Read More

B\'ezier curves are a widespread tool for the design of curves in Euclidian space. This paper generalizes the notion of B\'ezier curves to the infinite-dimensional space of images. To this end the space of images is equipped with a Riemannian metric which measures the cost of image transport and intensity variation in the sense of the metamorphosis model by Miller and Younes. Read More

In this paper the space of images is considered as a Riemannian manifold using the metamorphosis approach, where the underlying Riemannian metric simultaneously measures the cost of image transport and intensity variation. A robust and effective variational time discretization of geodesics paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals over a set of image intensity maps and pairwise matching deformations. Read More

Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. Read More

A posteriori error estimates are derived in the context of two-dimensional structural elastic shape optimization under the compliance objective. It is known that the optimal shape features are microstructures that can be constructed using sequential lamination. The descriptive parameters explicitly depend on the stress. Read More

Central schemes are frequently used for incompressible and compressible flow calculations. The present paper is the first in a forthcoming series where a new approach to a 2nd order accurate Finite Volume scheme operating on cartesian grids is discussed. Here we start with an adaptively refined cartesian primal grid in 3D and present a construction technique for the staggered dual grid based on $L^{\infty}$-Voronoi cells. Read More

Brain shift, i.e. the change in configuration of the brain after opening the dura mater, is a key problem in neuronavigation. Read More

We analyze a variational time discretization of geodesic calculus on finite- and certain classes of infinite-dimensional Riemannian manifolds. We investigate the fundamental properties of discrete geodesics, the associated discrete logarithm, discrete exponential maps, and discrete parallel transport, and we prove convergence to their continuous counterparts. The presented analysis is based on the direct methods in the calculus of variation, on $\Gamma$-convergence, and on weighted finite element error estimation. Read More

Based on a local approximation of the Riemannian distance on a manifold by a computationally cheap dissimilarity measure, a time discrete geodesic calculus is developed, and applications to shape space are explored. The dissimilarity measure is derived from a deformation energy whose Hessian reproduces the underlying Riemannian metric, and it is used to define length and energy of discrete paths in shape space. The notion of discrete geodesics defined as energy minimizing paths gives rise to a discrete logarithmic map, a variational definition of a discrete exponential map, and a time discrete parallel transport. Read More