Mark Peacock - Michigan St.

Mark Peacock
Are you Mark Peacock?

Claim your profile, edit publications, add additional information:

Contact Details

Mark Peacock
Michigan St.
New Carlisle
United States

Pubs By Year

Pub Categories

Astrophysics of Galaxies (9)
High Energy Astrophysical Phenomena (8)
Cosmology and Nongalactic Astrophysics (4)
Solar and Stellar Astrophysics (4)
Astrophysics (1)

Publications Authored By Mark Peacock

We present constraints on variations in the initial mass function (IMF) of nine local early-type galaxies based on their low mass X-ray binary (LMXB) populations. Comprised of accreting black holes and neutron stars, these LMXBs can be used to constrain the important high mass end of the IMF. We consider the LMXB populations beyond the cores of the galaxies ($>0. Read More

We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1. Read More

We investigate the integrated far-ultraviolet (FUV) emission from globular clusters. We present new FUV photometry of M~87's clusters based on archival HST WFPC2 F170W observations. We use these data to test the reliability of published photometry based on HST STIS FUV-MAMA observations, which are now known to suffer from significant red-leak. Read More

Affiliations: 1Michigan St., 2Michigan St., 3Michigan St., 4Alberta, 5Warsaw, 6Michigan St., 7Michigan St., 8Michigan St.

We report the discovery of an eclipsing low-mass X-ray binary at the center of the 3FGL error ellipse of the unassociated Fermi/Large Area Telescope gamma-ray source 3FGL J0427.9-6704. Photometry from OGLE and the SMARTS 1. Read More

We present the X-ray luminosity function (XLF) of low mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-types galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB populations to be observed to X-ray luminosities of $10^{37}-10^{38}$ erg/s, and HST optical mosaics which enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. Read More

We present medium-resolution optical spectroscopy with the SOAR telescope of the O star secondary of the high-mass gamma-ray binary 1FGL J1018.6-5856 to help determine whether the primary is a neutron star or black hole. We find that the secondary has a low radial velocity semi-amplitude of 11-12 km/s, with consistent values obtained for H and He absorption lines. Read More

Affiliations: 1Michigan St., 2Michigan St., 3NRL, 4Texas Tech, 5CRESST/Maryland, 6CRESST, 7Michigan St., 8CSIRO, 9CSIRO, 10Astrogeo, 11Michigan St., 12Michigan St., 13Michigan St., 14UNC, 15UNC

We present multiwavelength observations of the persistent Fermi-LAT unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 M_sun) and a ~ 0.35 M_sun giant secondary with a 5. Read More

We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC~3115. Using deep HST observations, we analyze stars two magnitudes fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37 and 54 kpc from its center -- corresponding to 7, 14, 21 effective radii (r_{e}). Read More

A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom heavy IMFs. These bottom heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. Read More

We present an investigation of potential signatures of the formation of multiple stellar populations in recently formed extragalactic star clusters. All of the Galactic globular clusters for which good samples of individual stellar abundances are available show evidence for multiple populations. This appears to require that multiple episodes of star formation and light element enrichment are the norm in the history of a globular cluster. Read More

We present optical HST/STIS spectroscopy of RZ 2109, a globular cluster in the elliptical galaxy NGC 4472. This globular cluster is notable for hosting an ultraluminous X-ray source as well as associated strong and broad [OIII] 4959, 5007 emission. We show that the HST/STIS spectroscopy spatially resolves the [OIII] emission in RZ 2109. Read More

We have searched for [OIII] 5007 emission in high resolution spectroscopic data from Flames/Giraffe VLT observations of 174 massive globular clusters (GCs) in NGC4472. No planetary nebulae (PNe) are observed in these clusters, constraining the number of PNe per bolometric luminosity, \alpha<0.8*10^{-7}PN/L_{\odot}. Read More

Accurate stellar population synthesis models are vital in understanding the properties and formation histories of galaxies. In order to calibrate and test the reliability of these models, they are often compared with observations of star clusters. However, relatively little work has compared these models in the ugriz filters, despite the recent widespread use of this filter set. Read More

(Abridged) Proxies for the stellar collision rates in globular clusters are often used. We present comparisons between these proxies and the full integrated collision rate for King models. Gamma, defined to be rho_0^3/2 r_c^2$, where $\rho_0$ is the central cluster density, and r_c is the core radius, is an accurate representation of the collision rate from the King model to within about 25% for all but the least concentrated clusters. Read More

We investigate the effect of stellar density on the ultraviolet (UV) emission from M31's globular clusters (GCs). Published far-UV (FUV) and near-UV (NUV) colours from Galaxy Evolution and Explorer (GALEX) observations are used as a probe into the temperature of the horizontal branch (HB) stars in these clusters. From these data, we demonstrate a significant relationship between the core density of a cluster and its FUV-NUV colour, with dense clusters having bluer ultraviolet colours. Read More

We investigate low mass X-ray binaries (LMXBs) in the M31 globular cluster (GC) system using data from the 2XMMi catalogue. These X-ray data are based on all publicly available XMM-Newton observations of the galaxy. This new survey provides the most complete and homogeneous X-ray survey of M31's GCs to date, covering >80% of the confirmed old clusters in the galaxy. Read More

We present an updated catalogue of M31 globular clusters (GCs) based on images from the Wide Field CAMera (WFCAM) on the UK Infrared Telescope and from the Sloan Digital Sky Survey (SDSS). Our catalogue includes new, self-consistent ugriz and K-band photometry of these clusters. We discuss the difficulty of obtaining accurate photometry of clusters projected against M31 due to small scale background structure in the galaxy. Read More

We investigate the relationship between Low Mass X-ray Binaries (LMXBs) and globular clusters (GCs) using UKIRT observations of M31 and existing Chandra, XMM-Newton, and ROSAT catalogues. By fitting King models to these data we have estimated the structural parameters and stellar collision rates of 239 of its GCs. We show a highly significant trend between the presence of a LMXB and the stellar collision rate of a cluster. Read More