Marcel Haas - Rutgers University

Marcel Haas
Are you Marcel Haas?

Claim your profile, edit publications, add additional information:

Contact Details

Marcel Haas
Rutgers University
United States

Pubs By Year

Pub Categories

Cosmology and Nongalactic Astrophysics (9)
Astrophysics of Galaxies (5)
Astrophysics (1)
Physics - Physics and Society (1)
Instrumentation and Methods for Astrophysics (1)

Publications Authored By Marcel Haas

Authors: Demitri Muna, Michael Alexander, Alice Allen, Richard Ashley, Daniel Asmus, Ruyman Azzollini, Michele Bannister, Rachael Beaton, Andrew Benson, G. Bruce Berriman, Maciej Bilicki, Peter Boyce, Joanna Bridge, Jan Cami, Eryn Cangi, Xian Chen, Nicholas Christiny, Christopher Clark, Michelle Collins, Johan Comparat, Neil Cook, Darren Croton, Isak Delberth Davids, Éric Depagne, John Donor, Leonardo A. dos Santos, Stephanie Douglas, Alan Du, Meredith Durbin, Dawn Erb, Daniel Faes, J. G. Fernández-Trincado, Anthony Foley, Sotiria Fotopoulou, Søren Frimann, Peter Frinchaboy, Rafael Garcia-Dias, Artur Gawryszczak, Elizabeth George, Sebastian Gonzalez, Karl Gordon, Nicholas Gorgone, Catherine Gosmeyer, Katie Grasha, Perry Greenfield, Rebekka Grellmann, James Guillochon, Mark Gurwell, Marcel Haas, Alex Hagen, Daryl Haggard, Tim Haines, Patrick Hall, Wojciech Hellwing, Edmund Christian Herenz, Samuel Hinton, Renee Hlozek, John Hoffman, Derek Holman, Benne Willem Holwerda, Anthony Horton, Cameron Hummels, Daniel Jacobs, Jens Juel Jensen, David Jones, Arna Karick, Luke Kelley, Matthew Kenworthy, Ben Kitchener, Dominik Klaes, Saul Kohn, Piotr Konorski, Coleman Krawczyk, Kyler Kuehn, Teet Kuutma, Michael T. Lam, Richard Lane, Jochen Liske, Diego Lopez-Camara, Katherine Mack, Sam Mangham, Qingqing Mao, David J. E. Marsh, Cecilia Mateu, Loïc Maurin, James McCormac, Ivelina Momcheva, Hektor Monteiro, Michael Mueller, Roberto Munoz, Rohan Naidu, Nicholas Nelson, Christian Nitschelm, Chris North, Juan Nunez-Iglesias, Sara Ogaz, Russell Owen, John Parejko, Vera Patrício, Joshua Pepper, Marshall Perrin, Timothy Pickering, Jennifer Piscionere, Richard Pogge, Radek Poleski, Alkistis Pourtsidou, Adrian M. Price-Whelan, Meredith L. Rawls, Shaun Read, Glen Rees, Hanno Rein, Thomas Rice, Signe Riemer-Sørensen, Naum Rusomarov, Sebastian F. Sanchez, Miguel Santander-García, Gal Sarid, William Schoenell, Aleks Scholz, Robert L. Schuhmann, William Schuster, Peter Scicluna, Marja Seidel, Lijing Shao, Pranav Sharma, Aleksandar Shulevski, David Shupe, Cristóbal Sifón, Brooke Simmons, Manodeep Sinha, Ian Skillen, Bjoern Soergel, Thomas Spriggs, Sundar Srinivasan, Abigail Stevens, Ole Streicher, Eric Suchyta, Joshua Tan, O. Grace Telford, Romain Thomas, Chiara Tonini, Grant Tremblay, Sarah Tuttle, Tanya Urrutia, Sam Vaughan, Miguel Verdugo, Alexander Wagner, Josh Walawender, Andrew Wetzel, Kyle Willett, Peter K. G. Williams, Guang Yang, Guangtun Zhu, Andrea Zonca

The Astropy Project ( is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Read More

To investigate feedback between relativistic jets emanating from Active Galactic Nuclei (AGN) and the stellar population of the host galaxy, we analyze the long-term evolution of the galaxy-scale simulations by Gaibler et al. (2012) of jets in massive, gas-rich galaxies at z ~ 2 - 3 and of stars formed in the host galaxies. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Read More

We investigate the properties of damped Ly{\alpha} absorption systems (DLAs) in semi-analytic models of galaxy formation, including partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases with a molecular gas-based star formation recipe. We investigate two approaches for partitioning gas into these constituents: a pressure-based and a metallicity-based recipe. We identify DLAs by passing lines of sight through our simulations to compute HI column densities. Read More

We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on the assumed star formation law, the equation of state imposed on the unresolved interstellar medium, the stellar initial mass function, the reionization history, and the assumed cosmology. This work complements that of Paper I, where we studied the effects of varying models for galactic winds driven by star formation and AGN. The normalisation of the matter power spectrum strongly affects the galaxy mass function, but has a relatively small effect on the physical properties of galaxies residing in haloes of a fixed mass. Read More

Affiliations: 1Rutgers University, 2Leiden Observatory, 3University of Chicago, 4MPE, 5Heidelberger Institut fur Theoretische Studien, 6University of Durham, 7Leiden Observatory

We use hydrodynamical simulations from the OWLS project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that if the sub-grid feedback from star formation is implemented kinetically, the feedback is only efficient if the initial wind velocity exceeds a critical value. This critical velocity increases with galaxy mass and also if metal-line cooling is included. Read More

The hypervelocity OB stars in the Milky Way Galaxy were ejected from the central regions some 10-100 million years ago. We argue that these stars, {as well as many more abundant bound OB stars in the innermost few parsecs,} were generated by the interactions of an AGN jet from the central black hole with a dense molecular cloud. Considerations of the associated energy and momentum injection have broader implications for the possible origin of the Fermi bubbles and for the enrichment of the intergalactic medium. Read More

We investigate the correlation between nine different dark matter halo properties using a rank correlation analysis and a Principal Component Analysis for a sample of haloes spanning five orders of magnitude in mass. We consider mass and dimensionless measures of concentration, age, relaxedness, sphericity, triaxiality, substructure, spin, and environment, where the latter is defined in a way that makes it insensitive to mass. We find that concentration is the most fundamental property. Read More

[Abridged] The properties of observed galaxies and dark matter haloes in simulations depend on their environment. The term environment has been used to describe a wide variety of measures that may or may not correlate with each other. Popular measures of environment include the distance to the N'th nearest neighbour, the number density of objects within some distance, or the mass of the host dark matter halo. Read More

Affiliations: 1Leiden Observatory, Leiden University, 2Leiden Observatory, Leiden University, 3Leiden Observatory, Leiden University, 4Leiden Observatory, Leiden University, 5Leiden Observatory, Leiden University

(Abridged) We study the rate at which gas accretes onto galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simulations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion onto haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. Read More

We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the parameters of the model to determine which physical processes are dominant and which aspects of the model are robust. Generically, we find that SF is limited by the build-up of dark matter haloes at high redshift, reaches a broad maximum at intermediate redshift, then decreases as it is quenched by lower cooling rates in hotter and lower density gas, gas exhaustion, and self-regulated feedback from stars and black holes. Read More

Galaxy formation models typically assume that the size and rotation speed of galaxy disks are largely dictated by the mass, concentration, and spin of their surrounding dark matter haloes. Equally important, however, are the fraction of baryons in the halo that collect into the central galaxy, as well as the net angular momentum that they are able to retain during its assembly process. We explore the latter using a set of four large cosmological N-body/gasdynamical simulations drawn from the OWLS (OverWhelmingly Large Simulations) project. Read More

Affiliations: 1Utrecht University, 2ESO/Garching, 3Utrecht University, 4UCL, 5Utrecht University, 6Utrecht University
Category: Astrophysics

We present the luminosity function (LF) of star clusters in M51 based on HST/ACS observations taken as part of the Hubble Heritage project. The clusters are selected based on their size and with the resulting 5990 clusters we present one of the largest cluster samples of a single galaxy. We find that the LF can be approximated with a double power-law distribution with a break around M_V = -8. Read More