Manmohan Chandraker

Manmohan Chandraker
Are you Manmohan Chandraker?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Manmohan Chandraker
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (9)

Publications Authored By Manmohan Chandraker

Despite recent advances in face recognition using deep learning, severe accuracy drops are observed for large pose variations in unconstrained environments. Learning pose-invariant features is one solution, but needs expensively labeled large scale data and carefully designed feature learning algorithms. In this work, we focus on frontalizing faces in the wild under various head poses, including extreme profile views. Read More

We introduce a Deep Stochastic IOC RNN Encoderdecoder framework, DESIRE, for the task of future predictions of multiple interacting agents in dynamic scenes. DESIRE effectively predicts future locations of objects in multiple scenes by 1) accounting for the multi-modal nature of the future prediction (i.e. Read More

Deep neural networks (DNNs) trained on large-scale datasets have recently achieved impressive improvements in face recognition. But a persistent challenge remains to develop methods capable of handling large pose variations that are relatively under-represented in training data. This paper presents a method for learning a feature representation that is invariant to pose, without requiring extensive pose coverage in training data. Read More

Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D space while inferring their visibility states, given a single RGB image. Our key insight is to exploit domain knowledge to regularize the network by deeply supervising its hidden layers, in order to sequentially infer intermediate concepts associated with the final task. Read More

We introduce a new light-field dataset of materials, and take advantage of the recent success of deep learning to perform material recognition on the 4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first mid-size dataset for light-field images. Read More

We present a deep learning framework for accurate visual correspondences and demonstrate its effectiveness for both geometric and semantic matching, spanning across rigid motions to intra-class shape or appearance variations. In contrast to previous CNN-based approaches that optimize a surrogate patch similarity objective, we use deep metric learning to directly learn a feature space that preserves either geometric or semantic similarity. Our fully convolutional architecture, along with a novel correspondence contrastive loss allows faster training by effective reuse of computations, accurate gradient computation through the use of thousands of examples per image pair and faster testing with $O(n)$ feed forward passes for $n$ keypoints, instead of $O(n^2)$ for typical patch similarity methods. Read More

We propose a novel cascaded framework, namely deep deformation network (DDN), for localizing landmarks in non-rigid objects. The hallmarks of DDN are its incorporation of geometric constraints within a convolutional neural network (CNN) framework, ease and efficiency of training, as well as generality of application. A novel shape basis network (SBN) forms the first stage of the cascade, whereby landmarks are initialized by combining the benefits of CNN features and a learned shape basis to reduce the complexity of the highly nonlinear pose manifold. Read More

We present an approach to matching images of objects in fine-grained datasets without using part annotations, with an application to the challenging problem of weakly supervised single-view reconstruction. This is in contrast to prior works that require part annotations, since matching objects across class and pose variations is challenging with appearance features alone. We overcome this challenge through a novel deep learning architecture, WarpNet, that aligns an object in one image with a different object in another. Read More

We present a novel large-scale dataset and comprehensive baselines for end-to-end pedestrian detection and person recognition in raw video frames. Our baselines address three issues: the performance of various combinations of detectors and recognizers, mechanisms for pedestrian detection to help improve overall re-identification accuracy and assessing the effectiveness of different detectors for re-identification. We make three distinct contributions. Read More