M. Vicente Pinto - Santa Catarina University

M. Vicente Pinto
Are you M. Vicente Pinto?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. Vicente Pinto
Affiliation
Santa Catarina University
City
Macapá
Country
Brazil

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Phenomenology (21)
 
Nuclear Theory (13)
 
Mathematics - Classical Analysis and ODEs (7)
 
Mathematics - Dynamical Systems (5)
 
High Energy Physics - Experiment (5)
 
Mathematics - Algebraic Geometry (4)
 
Mathematics - Commutative Algebra (4)
 
Physics - Instrumentation and Detectors (4)
 
High Energy Astrophysical Phenomena (3)
 
Mathematics - Numerical Analysis (2)
 
Mathematics - Combinatorics (2)
 
High Energy Physics - Lattice (2)
 
Computer Science - Software Engineering (2)
 
High Energy Physics - Theory (1)
 
Physics - Statistical Mechanics (1)
 
Computer Science - Cryptography and Security (1)
 
Physics - Plasma Physics (1)
 
Physics - Other (1)
 
Physics - Computational Physics (1)
 
Physics - Physics and Society (1)
 
Computer Science - Computers and Society (1)
 
Physics - Accelerator Physics (1)
 
Computer Science - Computation and Language (1)
 
Mathematics - Analysis of PDEs (1)
 
Computer Science - Information Theory (1)
 
Solar and Stellar Astrophysics (1)
 
Mathematics - Information Theory (1)
 
Computer Science - Information Retrieval (1)

Publications Authored By M. Vicente Pinto

2017May
Affiliations: 1Institut de Física d'Altes Energies, Barcelona, Spain, 2Institut de Física d'Altes Energies, Barcelona, Spain, 3Institut de Física d'Altes Energies, Barcelona, Spain, 4Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland, 5Institut de Física d'Altes Energies, Barcelona, Spain, 6Institut de Física d'Altes Energies, Barcelona, Spain, 7Karlsruher Institut für Technologie, Karlsruhe, Germany, 8Institut de Física d'Altes Energies, Barcelona, Spain, 9Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland, 10Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland, 11University of Liverpool, Liverpool, United Kingdom

An upgrade of the ATLAS experiment for the High Luminosity phase of LHC is planned for 2024 and foresees the replacement of the present Inner Detector (ID) with a new Inner Tracker (ITk) completely made of silicon devices. Depleted active pixel sensors built with the High Voltage CMOS (HV-CMOS) technology are investigated as an option to cover large areas in the outermost layers of the pixel detector and are especially interesting for the development of monolithic devices which will reduce the production costs and the material budget with respect to the present hybrid assemblies. For this purpose the H35DEMO, a large area HV-CMOS demonstrator chip, was designed by KIT, IFAE and University of Liverpool, and produced in AMS 350 nm CMOS technology. Read More

Green computing has become a growing trend in computing, pursuing the goal of helping software developers to pay more attention to produce energy-effiency software. This is specially relevant for battery-powered mobile applications, where minimizing the energy consumption is required to both mitigate the greenhouse effect and to extend the battery lifetime. In this paper we analyze the energy consumption of cryptographic primitives in Android devices. Read More

With the advent of the Internet of Things (IoT), the percentage of global emissions attributable to Information Systems is expected to further increase in the coming years, due to a proliferation of Internet-connected devices omnipresent in our daily lives (e.g., electric meters, wearable devices, etc. Read More

The number of works addressing the role of energy efficiency in the software development has been increasing recently. But, designers and programmers still complain about the lack of tools that help them to make energy-efficiency decisions. Some works show that energy-aware design decisions tend to have a larger impact in the power consumed by applications, than code optimizations. Read More

In this paper we prove the well-posedness and we study the asymptotic behavior of nonoscillatory $L^p$-solutions for a third order nonlinear scalar differential equation. The equation consists of two parts: a linear third order with constant coefficients part and a nonlinear part represented by a polynomial of fourth order in three variables with variable coefficients. The results are obtained assuming three hypotheses: (i) the characteristic polynomial associated with the linear part has simple and real roots, (ii) the coefficients of the polynomial satisfy asymptotic integral smallness conditions, and (iii) the polynomial coefficients are in $L^p([t_0,\infty[)$. Read More

HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the $4^{\mathrm{th}}$ generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between $1\cdot 10^{14}$ and $5\cdot 10^{15}$ 1-MeV-n$_\textrm{eq}$/cm$^2$. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Read More

In this paper, we introduce a nonresident computer virus model and prove the existence of at least one positive periodic solution. The proposed model is based on a biological approach and is obtained by considering that all rates (rates that the computers are disconnected from the Internet, the rate that the computers are cured, etc) are time dependent real functions. Assuming that the initial condition is a positive vector and the coefficients are positive $\omega-$periodic and applying the topological degree arguments we deduce that generalized nonresident computer virus model has at least one positive $\omega-$periodic solution. Read More

The existence, uniqueness and stability of differential equations with piecewise constant argument (DEPCAs) and the differential equation with piecewise constant argument of generalized type (DEPCAGs) has been well investigated recently. Seldom did the authors study the linearization problem of such systems except \cite{Papaschinopoulos96} and \cite{Pinto-MCM09}. However, they studied the linearization problem based on that the nonlinear terms in the systems are bounded. Read More

2016Aug
Authors: H. Abramowicz, A. Abusleme, K. Afanaciev, N. Alipour Tehrani, C. Balázs, Y. Benhammou, M. Benoit, B. Bilki, J. -J. Blaising, M. J. Boland, M. Boronat, O. Borysov, I. Božović-Jelisavčić, M. Buckland, S. Bugiel, P. N. Burrows, T. K. Charles, W. Daniluk, D. Dannheim, R. Dasgupta, M. Demarteau, M. A. Díaz Gutierrez, G. Eigen, K. Elsener, U. Felzmann, M. Firlej, E. Firu, T. Fiutowski, J. Fuster, M. Gabriel, F. Gaede, I. García, V. Ghenescu, J. Goldstein, S. Green, C. Grefe, M. Hauschild, C. Hawkes, D. Hynds, M. Idzik, G. Kačarević, J. Kalinowski, S. Kananov, W. Klempt, M. Kopec, M. Krawczyk, B. Krupa, M. Kucharczyk, S. Kulis, T. Laštovička, T. Lesiak, A. Levy, I. Levy, L. Linssen, S. Lukić, A. A. Maier, V. Makarenko, J. S. Marshall, K. Mei, G. Milutinović-Dumbelović, J. Moroń, A. Moszczyński, D. Moya, R. M. Münker, A. Münnich, A. T. Neagu, N. Nikiforou, K. Nikolopoulos, A. Nürnberg, M. Pandurović, B. Pawlik, E. Perez Codina, I. Peric, M. Petric, F. Pitters, S. G. Poss, T. Preda, D. Protopopescu, R. Rassool, S. Redford, J. Repond, A. Robson, P. Roloff, E. Ros, O. Rosenblat, A. Ruiz-Jimeno, A. Sailer, D. Schlatter, D. Schulte, N. Shumeiko, E. Sicking, F. Simon, R. Simoniello, P. Sopicki, S. Stapnes, R. Ström, J. Strube, K. P. Świentek, M. Szalay, M. Tesař, M. A. Thomson, J. Trenado, U. I. Uggerhøj, N. van der Kolk, E. van der Kraaij, M. Vicente Barreto Pinto, I. Vila, M. Vogel Gonzalez, M. Vos, J. Vossebeld, M. Watson, N. Watson, M. A. Weber, H. Weerts, J. D. Wells, L. Weuste, A. Winter, T. Wojtoń, L. Xia, B. Xu, A. F. Żarnecki, L. Zawiejski, I. -S. Zgura

The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. Read More

2016Aug
Authors: The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

Social Media users tend to mention entities when reacting to news events. The main purpose of this work is to create entity-centric aggregations of tweets on a daily basis. By applying topic modeling and sentiment analysis, we create data visualization insights about current events and people reactions to those events from an entity-centric perspective. Read More

Let G be a graph obtained by taking r>=2 paths and identifying all first vertices and identifying all the last vertices. We compute the Castelnuovo--Mumford regularity of the quotient S/I(X), where S is the polynomial ring on the edges of G and I(X) is the vanishing ideal of the projective toric subset parameterized by G. The case we consider is the first case where the regularity was unknown, following earlier computations (by several authors) of the regularity when G is a tree, cycle, complete graph or complete bipartite graph, but specially in light of the reduction of the computation of the regularity in the bipartite case to the computation of the regularity of the blocks of G. Read More

The $\pi_0$ neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, $G(eB)$, fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. Read More

High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. Read More

Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown. Read More

The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu--Jona-Lasinio model if the coupling~$G$ of the model decreases with the strength $B$ of the magnetic field and temperature~$T$. The thermo-magnetic dependence of $G(B,T)$ is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with $G(B, T)$ are compared with the ones obtained at constant coupling, $G$. Read More

We study the existence of almost periodic solutions for semi-linear abstract parabolic evolution equations with impulse action at state-dependent moments. In particular, we present conditions excluding the beating phenomenon in these systems. The main result is illustrated with an example of impulsive diffusive logistic equation. Read More

We consider the two flavor Nambu--Jona-Lasinio model within the RPA framework to evaluate the masses of the $\sigma$ and $\pi^0$ mesons and the $\pi^0$ decay constant in the presence of a magnetic field at vanishing temperatures and baryonic densities. The present work extends other RPA applications by fully considering the external momenta, which enter the integrals representing the magnetized polarization tensor, so that more accurate results can be obtained in the evaluation of physical quantities containing pionic contributions. As we show, this technical improvement generates results which agree well with those produced by lattice simulations and chiral perturbation theory. Read More

We propose a criterion for the existence of monotone wavefronts in non-monotone and non-local monostable diffusive equations of the Mackey-Glass type. This extends recent results by Gomez et al proved for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (up to a translation) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Read More

In this paper, ordinary and exponential dichotomies are defined in differential equations with equations with piecewise constant argument of general type. We prove the asymptotic equivalence between the bounded solutions of a linear system and a perturbed system with integrable and bounded perturbations. Read More

A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar $ \lambda\phi^4$ field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. Read More

We study a linearly transformed particle method for the aggregation equation with smooth or singular interaction forces. For the smooth interaction forces, we provide convergence estimates in $L^1$ and $L^\infty$ norms depending on the regularity of the initial data. Moreover, we give convergence estimates in bounded Lipschitz distance for measure valued solutions. Read More

We use the scalar model with quartic interaction to illustrate how a nonperturbative variational technique combined with renormalization group (RG) properties efficiently resums perturbative expansions in thermal field theories. The resulting convergence and scale dependence of optimized thermodynamical quantities, here illustrated up to two-loop order, are drastically improved as compared to standard perturbative expansions, as well as to other related methods such as the screened perturbation or (resummed) hard-thermal-loop perturbation, that miss RG invariance as we explain. Being very general and easy to implement, our method is a potential analytical alternative to deal with the phase transitions of field theories such as thermal QCD. Read More

We explore the phase structure of dense magnetized quark matter when a repulsive vector interaction, parametrized by $G_V$, is present. Our results show that for a given magnetic field intensity ($B$) one may find a value of $G_V$ for which quark matter may coexist at three different baryonic density values leading to the appearance of two triple points in the phase diagram which have not been observed before. Another novel result is that at high pressure and low temperature we observe a first order transition which presents a negative slope in the $P-T$ that is reminiscent of the solid-liquid transition line observed within the water phase diagram. Read More

We obtain sufficient conditions ensuring the existence of a uniformly continuous and H\"older continuous homeomorphism between the solutions of a linear system of differential equations with piecewise constant argument of generalized type and the solutions of the quasilinear corresponding system. We use a definition (recently introduced by M. Akhmet) of exponential dichotomy for those systems combined with technical assumptions on the nonlinear part. Read More

The anisotropies in the pressure obtained from the energy-momentum tensor are studied for magnetized quark matter within the su(3) Nambu-Jona-Lasinio model for both $\beta$-equilibrium matter and quark matter with equal quark chemical potentials. The effect of the magnetic field on the particle polarization, magnetization and quark matter constituents is discussed. It is shown that the onset of the $s$-quark after chiral symmetry restoration of the $u$ and $d$-quarks gives rise to a special effect on the magnetization in the corresponding density range: a quite small magnetization just before the $s$ onset is followed by a strong increase of this quantity as soon as the $s$ quark sets in. Read More

Let K=Fq be a finite field. We introduce a family of projective Reed-Muller-type codes called projective Segre codes. Using commutative algebra and linear algebra methods, we study their basic parameters and show that they are direct products of projective Reed-Muller-type codes. Read More

Lattice QCD results for the coefficient $c_2$ appearing in the Taylor expansion of the pressure show that this quantity raises with the temperature towards the Stefan-Boltzmann limit. On the other hand, model approximations predict that when a vector repulsion, parametrized by $G_V$, is present this coefficient reaches a maximum just after $T_c$ and then deviates from the lattice predictions. Recently, this discrepancy has been used as a guide to constrain the (presently unknown) value of $G_V$ within the framework of effective models at large-$N_c$ (LN). Read More

Existence of almost automorphic solutions for abstract delayed differential equations is established. Using ergodicity, exponential dichotomy and Bi-almost automorphicity on the homogeneous part, sufficient conditions for the existence and uniqueness of almost automorphic solutions are given. Read More

This article deals with the asymptotic behavior of fourth order differential equation where the coefficients are perturbations of linear constant coefficient equation. We introduce a change of variable and deduce that the new variable satisfies a third order differential equation of Riccati type. We assume three hypothesis. Read More

In the present work we are interested in understanding various properties of quark matter subject to strong magnetic fields described by the Nambu-Jona-Lasinio model with Polyakov loop. We start by analysing the differences arising from two different vector interactions in the Lagrangian densities, at zero temperature, and apply the results to stellar matter. We then investigate the position of the critical end point for different chemical potential and density scenarios. Read More

Although asymptotic freedom is an essential feature of QCD, it is absent in effective chiral quark models like the Nambu--Jona-Lasinio and linear sigma models. In this work we advocate that asymptotic freedom plays a key role in the recently observed discrepancies between results of lattice QCD simulations and quark models regarding the behavior of the pseudocritical temperature $T_{\rm pc}$ for chiral symmetry restoration in the presence of a magnetic field $B$. We show that the lattice predictions that $T_{\rm pc}$ decreases with $B$ can be reproduced within the Nambu--Jona-Lasinio model if the coupling constant $G$ of the model decreases with $B$ and the temperature. Read More

The effect of the vector interaction on three flavor magnetized matter is studied within the SU(3) Nambu--Jona-Lasiono quark model. We have considered cold matter under a static external magnetic field within two different models for the vector interaction in order to investigate how the form of the vector interaction and the intensity of the magnetic field affect the equation of state as well as the strangeness content. It was shown that the flavor independent vector interaction predicts a smaller strangeness content and, therefore, harder equations of state. Read More

2014Feb
Affiliations: 1Buenos Aires, CONICET & CNEA, 2Santa Catarina U. & Alicante U., 3Santa Catarina U., 4Buenos Aires, CONICET & CNEA, Buenos Aires & Favaloro U.

The possible different phases of cold quark matter in the presence of a finite magnetic field and chemical potential are obtained within the SU(3) NJL model for two parameter sets often used in the literature. Although the general pattern is the same in both cases, the number of intermediate phases is parameter dependent. The chiral susceptibilities, as usually defined, are different not only for the s-quark as compared with the two light quarks, but also for the u and d-quarks, yielding non identical crossover lines for the light quark sector. Read More

This work deals with the existence of an almost periodic solution for certain kind of differential equations with generalized piecewise constant argument, almost periodic coefficients which are seen as a perturbation of a linear equation of that kind satisfying an exponential dichotomy on a difference equation. The stability of that solution in a semi-axis studied. Read More

Using social media data -specially twitter -of the Chilean 2011-12 student movement, we study their social network evolution over time to analyze how leaders and participants self-organize and spread information. Based on a few key events of the student movement's timeline, we visualize the student network trajectory and analyze their structural and semantic properties. Therefore, in this paper we: i) describe the basic network topology of the 2011-12 Chilean massive student movement; ii) explore how the 180 key central nodes of the movement are connected, self-organize and spread information. Read More

In the recently years it has been argued that spectators in heavy ion collisions are responsible for creating a strong magnetic field that could play an important role in the QCD phase transition. In this work we use the SU(2) Nambu--Jona-Lasinio (NJL) model in order to study the chiral transition in quark matter subject to a strong magnetic field. We show some results involving the breaking of chiral symmetry and its restoration at finite temperature and density. Read More

We consider two flavor magnetized quark matter in the presence of a repulsive vector coupling ($G_V$) devoting special attention to the low temperature region of the phase diagram to show how this type of interaction counterbalances the effects produced by a strong magnetic field. The most important effects occur at intermediate and low temperatures affecting the location of the critical end point as well as the region of first order chiral transitions. When $G_V=0$ the presence of high magnetic fields ($eB \ge 10 m_\pi^2$) increases the density coexistence region with respect to the case when $B$ and $G_V$ are absent while a decrease of this region is observed at high $G_V$ values and vanishing magnetic fields. Read More

The surface tension of quark matter plays a crucial role for the possibility of quark matter nucleation during the formation of compact stellar objects and also for the existence of a mixed phase within hybrid stars. However, despite its importance, this quantity does not have a well established numerical value. Some early estimates have predicted that, at zero temperature, the value falls within the wide range $\gamma_0\approx10-300{\rm\ MeV/fm^2}$ but, very recently, different model applications have reduced these numerical values to fall within the range $\gamma_0\approx5-30{\rm\ MeV/fm^2}$ which would favor the phase conversion process as well as the appearance of a mixed phase in hybrid stars. Read More

The phase diagram and thermodynamic properties of the (2+1)-dimensional Gross-Neveu model are studied in the presence of a constant magnetic field. The optimized perturbation theory (OPT) is used to obtain results going beyond the large-N approximation. The free energy and the complete phase diagram of the model, in terms of temperature, chemical potential and magnetic field are obtained and studied in details. Read More

In this article we introduce a class of discontinuous almost automorphic functions which appears naturally in the study of almost automorphic solutions of differential equations with piecewise constant argument. Their fundamental properties are used to prove the almost automorphicity of bounded solutions of a system of differential equations with piecewise constant argument. Due to the strong discrete character of these equations, the existence of a unique discrete almost automorphic solution of a non-autonomous almost automorphic difference system is obtained, for which conditions of exponential dichotomy and discrete Bi-almost automorphicity are fundamental. Read More

A poset on a certain class of partitions known as k-shapes was recently introduced to provide a combinatorial rule for the expansion of a (k-1)-Schur functions into k-Schur functions at t=1. The main ingredient in this construction was a bijection, which we call the weak bijection, that associates to a k-tableau a pair made out of a (k-1)-tableau and a path in the poset of k-shapes. We define here a concept of charge on k-tableaux (which conjecturally gives a combinatorial interpretation for the expansion coefficients of Hall-Littlewood polynomials into k-Schur functions), and show that it is compatible in the standard case with the weak bijection. Read More

We study the vanishing ideal of the parametrized algebraic toric associated to the complete multipartite graph $\G=\mathcal{K}_{\alpha_1,... Read More

This paper is concerned with the design, analysis and implementation of preconditioning concepts for spectral Discontinuous Galerkin discretizations of elliptic boundary value problems. While presently known techniques realize a growth of the condition numbers that is logarithmic in the polynomial degrees when all degrees are equal and quadratic otherwise, our main objective is to realize full robustness with respect to arbitrarily large locally varying polynomial degrees degrees, i.e. Read More

We study the regularity and the algebraic properties of certain lattice ideals. We establish a map I --> I\~ between the family of graded lattice ideals in an N-graded polynomial ring over a field K and the family of graded lattice ideals in a polynomial ring with the standard grading. This map is shown to preserve the complete intersection property and the regularity of I but not the degree. Read More

We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts to using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Read More

The surface tension of quark matter plays a crucial role for the possibility of quark matter nucleation during the formation of compact stellar objects, because it determines the nucleation rate and the associated critical size. However, this quantity is not well known and the theoretical estimates fall within a wide range, $\gamma_0 \approx 5-300 MeV/fm^2$. We show here that once the equation of state is available one may use a geometrical approach to obtain a numerical value for the surface tension that is consistent with the model approximations adopted. Read More

We consider the simplest versions of the Nambu--Jona-Lasinio (NJL) model and the Linear Sigma Model (LSM), in the Mean Field Approximation (MFA), in order to analyze hot and dense two flavor quark matter subject to strong magnetic fields. We pay especial attention to the case of a finite chemical potential, which has not yet been fully explored. Our results, for the NJL model, are in qualitative agreement with other recent applications showing that, for stronger fields, the first order segment of the transition line increases with the magnetic strength while the coexistence chemical potential value, at low temperatures, decreases. Read More

We use the three-flavor Nambu--Jona-Lasinio model, which includes strangeness and quark physical masses in the mean field approximation, to investigate the influence of strong magnetic fields on the QCD phase diagram covering the whole $T-\mu$ plane. It is found that the size of the first order transition line increases as the field strength increases so that a larger coexistence region for hadronic and quark matter should be expected for strong magnetic fields. The location of the critical end point is also affected by the presence of magnetic fields which invariably increase the temperature value at which the first order line terminates. Read More

Two-loop corrections for the standard Abelian Nambu-Jona-Lasinio model are obtained with the Optimized Perturbation Theory (OPT) method. These contributions improve the usual mean-field and Hartree-Fock results by generating a $1/N_c$ suppressed term, which only contributes at finite chemical potential. We take the zero temperature limit observing that, within the OPT, chiral symmetry is restored at a higher chemical potential $\mu$, while the resulting equation of state is stiffer than the one obtained when mean-field is applied to the standard version of the model. Read More