M. V. Garzelli - conveners

M. V. Garzelli
Are you M. V. Garzelli?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. V. Garzelli
Affiliation
conveners
City
Brechin
Country
United Kingdom

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (39)
 
High Energy Physics - Experiment (15)
 
Nuclear Theory (8)
 
Astrophysics (5)
 
Physics - Data Analysis; Statistics and Probability (2)
 
Solar and Stellar Astrophysics (2)
 
General Relativity and Quantum Cosmology (1)
 
Physics - Computational Physics (1)
 
High Energy Astrophysical Phenomena (1)
 
Nuclear Experiment (1)

Publications Authored By M. V. Garzelli

Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches. Read More

We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon-gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. Read More

Prompt neutrino fluxes due to the interactions of high-energy cosmic rays with the Earth's atmosphere are backgrounds in the search for high-energy neutrinos of galactic or extra-galactic origin performed by Very Large Volume Neutrino Telescopes. We summarize our predictions for prompt neutrinos, showing their basic features as emerging from the calculation in a QCD framework capable of describing recent charm data from the Large Hadron Collider. Read More

We discuss recent theoretical progress in heavy-quark hadro-production, in particular focusing on processes involving charm-quarks, and on their implications in different fields of particle phenomenology, from collider to astroparticle physics. Read More

We study the impact of the effect of multinucleon interactions in the reconstruction of the neutrino energy on the fit of the MiniBooNE data in terms of neutrino oscillations. We obtain some improvement of the fit of the MiniBooNE low-energy excess in the framework of two-neutrino oscillations and a shift of the allowed region in the $\sin^2 2\vartheta$--$\Delta{m}^2$ plane towards smaller values of $\sin^2 2\vartheta$ and larger values of $\Delta{m}^2$. However this effect is not enough to solve the problem of the appearance-disappearance tension in the global fit of short-baseline neutrino oscillation data. Read More

Prompt neutrino fluxes are basic backgrounds in the search of high-energy neutrinos of astrophysical origin, performed by means of full-size neutrino telescopes located at Earth, under ice or under water. Predictions for these fluxes are provided on the basis of up-to-date theoretical results for charm hadroproduction in perturbative QCD, together with a comprehensive discussion of the various sources of theoretical uncertainty affecting their computation, and a quantitative estimate of each uncertainty contribution. Read More

We update predictions for lepton fluxes from the hadroproduction of charm quarks in the scattering of primary cosmic rays with the Earth's atmosphere. The calculation of charm-pair hadroproduction applies the latest results from perturbative QCD through next-to-next-to-leading order and modern parton distributions, together with estimates on various sources of uncertainties. Our predictions for the lepton fluxes turn out to be compatible, within the uncertainty band, with recent results in the literature. Read More

The impact of recent measurements of heavy-flavour production in deep inelastic $ep$ scattering and in $pp$ collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions $x$ of the proton momentum, down to $x \sim 5 \times 10^{-6}$. Read More

We present predictions for the hadroproduction of $t\bar{t}b\bar{b}$ final states at the LHC with collision energies $\sqrt{s}$ = 8TeV and 14TeV at NLO accuracy matched with parton shower, as obtained with PowHel+ PYTHIA. We quantify the effects of parton shower and hadronization. We find these are in general moderate except the effect of the decay of heavy particles, which can modify significantly some distributions, like that of the invariant mass of the two leading b-jets. Read More

We present the computation of the differential cross section for the process $pp(\bar{p}) \to (W^+\,W^-\,b\,\bar{b} \to)\;e^+\,\nu_e\,\mu^-\,\bar{\nu}_\mu\,b\, \bar{b}+X$ at NLO QCD accuracy matched to Shower Monte Carlo (SMC) simulations using PowHel, on the basis of the interface between HELAC-NLO and POWHEG-BOX. We include all resonant and non-resonant contributions. This is achieved by fully taking into account the effect of off-shell t-quarks and off-shell W-bosons in the complex mass scheme. Read More

2014May
Affiliations: 1conveners, 2conveners, 3conveners, 4conveners, 5conveners, 6conveners, 7conveners, 8conveners, 9conveners, 10conveners, 11conveners, 12conveners, 13conveners, 14conveners, 15conveners, 16conveners, 17conveners, 18conveners, 19conveners, 20conveners, 21conveners, 22conveners, 23conveners, 24conveners, 25conveners, 26conveners, 27conveners, 28conveners, 29conveners, 30conveners, 31conveners, 32conveners, 33conveners, 34conveners, 35conveners, 36conveners, 37conveners, 38conveners, 39conveners, 40conveners, 41conveners, 42conveners, 43conveners, 44conveners, 45conveners, 46conveners, 47conveners, 48conveners, 49conveners, 50conveners, 51conveners, 52conveners, 53conveners, 54conveners, 55conveners, 56conveners, 57conveners, 58conveners, 59conveners, 60conveners, 61conveners, 62conveners, 63conveners, 64conveners, 65conveners, 66conveners, 67conveners, 68conveners, 69conveners, 70conveners, 71conveners, 72conveners, 73conveners, 74conveners, 75conveners, 76conveners, 77conveners, 78conveners, 79conveners, 80conveners

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

It has been conjectured that Micro Black Holes (MBH) may be formed in the presence of large extra dimensions. These MBHs have very small mass and they decay almost instantaneously. Taking into consideration quantum effects, they should Hawking radiate mainly to Standard Model particles, this radiation then gets modified by the non trivial geometry around the MBHs; the so called greybody factors which filter the Hawking radiation. Read More

We analyzed the band splitting of a Type II radio burst observed on 1997 May 12 by ground- and space-based radio spectrometers. Type II radio emission is the most evident signature of coronal shock waves and the observed band splitting is generally interpreted as due to plasma emission from both upstream and downstream shock regions. From the inferred compression ratio we estimated, using the magnetohydrodynamic (MHD) Rankine-Hugoniot relations, the ambient Alfven Mach number. Read More

2013Jul
Authors: The LHC Higgs Cross Section Working Group, S. Heinemeyer1, C. Mariotti2, G. Passarino3, R. Tanaka4, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

Faraday rotation measures (RMs) of the polarized emission from extragalactic radio sources occulted by the coronal plasma were used to infer the radial profile of the inner heliospheric magnetic field near solar minimum activity. By inverting LASCO/SOHO polarized brightness (pB) data taken during the days of observations on May 1997, we retrieved the electron density distribution along the lines of sight to the sources, thus allowing to disentangle the two plasma properties that contribute to the observed RMs. By comparing the observed RM values to those theoretically predicted by a power-law model of the radial component of the coronal magnetic field, using a best-fitting procedure, we found that the radial component of the inner heliospheric magnetic field can be nicely approximated by a power-law of the form B_r = 3. Read More

Extended air showers originate from interactions between ultra-high-energy cosmic rays and nuclei in the Earth's atmosphere. At present there are some discrepancies between experimental observed properties of these air showers and theoretical predictions obtained by using standard hadronic interaction models for cosmic ray primaries with laboratory energies above 10^5 - 10^6 TeV. In this contribution, we will present a preliminary discussion of the possibility (in the framework of TeV gravity models) that shower development may begin with the production of a microscopic black hole (MBH) at the moment of the primary collision, which then evaporates and decays, by emitting gravitons and Standard Model quanta. Read More

The PowHel framework allows to make predictions of total and differential cross-sections of multiparticle hadroproduction processes at both NLO QCD accuracy and NLO QCD matched to Parton Shower, on the basis of the interface between the POWHEG-BOX and HELAC-NLO codes. It has already been applied to study several processes involving a top-antitop pair in association with a third particle or hadronic jet. Our most recent predictions concern top-antitop-V hadroproduction (with V = W or Z), at both parton and hadron level, by considering different decay channels (hadronic and leptonic) of the heavy particles. Read More

We present theoretical predictions for the hadroproduction of t tbar W+, t tbar W- and t tbar Z at LHC as obtained by matching numerical computations at NLO accuracy in QCD with Shower Monte Carlo programs. The calculation is performed by PowHel, relying on the POWHEG-BOX framework, that allows for the matching between the fixed order computation, with input of matrix elements produced by the HELAC-NLO collection of event generators, and the Parton Shower evolution, followed by hadronization and hadron decays as described by PYTHIA and HERWIG. We focus on the dilepton and trilepton decay channels, studied recently by the CMS Collaboration. Read More

2012Jan
Authors: LHC Higgs Cross Section Working Group, S. Dittmaier1, C. Mariotti2, G. Passarino3, R. Tanaka4, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We present predictions for the production cross section of a Standard Model Z0-boson in association with a top-antitop pair at the next-to-leading order accuracy in QCD, matched with shower Monte Carlo programs to evolve the system down to the hadronization energy scale. We adopt a framework based on three well established numerical codes, namely the POWHEG-BOX, used for computing the cross section, HELAC-NLO, which generates all necessary input matrix elements, and finally a parton shower program, such as PYTHIA or HERWIG, which allows for including t-quark and Z0-boson decays at the leading order accuracy and generates shower emissions, hadronization and hadron decays. Read More

We introduce a twiki page with collections of generated Monte Carlo event samples in proton-proton collisions at LHC energies including a heavy quark-antiquark pair in the final state. These samples are generated with the POWHEG method and can be used to prepare distributions at the NLO accuracy with first radiation treated according to the parton shower approach. Information related to each event is stored in the form prescribed by the Les Houches Accords. Read More

Based on the OPP technique and the HELAC framework, HELAC-1LOOP is a program that is capable of numerically evaluating QCD virtual corrections to scattering amplitudes. A detailed presentation of the algorithm is given, along with instructions to run the code and benchmark results. The program is part of the HELAC-NLO framework that allows for a complete evaluation of QCD NLO corrections. Read More

We present predictions for the production cross section of a Standard Model Higgs boson in association with a top-antitop pair at next-to-leading order accuracy using matrix elements obtained from the HELAC-Oneloop package. The NLO prediction was interfaced to the PYTHIA and HERWIG shower Monte Carlo programs with the help of POWHEG-Box, allowing for decays of massive particles, showering and hadronization, thus leading to final results at the hadron level. Read More

We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. Read More

The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. Read More

The analytical package written in FORM presented in this paper allows the computation of the complete set of Feynman Rules producing the Rational terms of kind R2 contributing to the virtual part of NLO amplitudes in the Standard Model of the Electroweak interactions. Building block topologies filled by means of generic scalars, vectors and fermions, allowing to build these Feynman Rules in terms of specific elementary particles, are explicitly given in the Rxi gauge class, together with the automatic dressing procedure to obtain the Feynman Rules from them. The results in more specific gauges, like the 't Hooft Feynman one, follow as particular cases, in both the HV and the FDH dimensional regularization schemes. Read More

We present the complete set of Feynman rules producing the rational terms of kind R_2 needed to perform any 1-loop calculation in the Electroweak Standard Model. Our formulae are given both in the R_xi gauge and in the Unitary gauge, therefore completing the results in the 't Hooft-Feynman gauge already presented in a previous publication. As a consistency check, we verified, in the case of the process H -> gamma gamma and in a few other physical cases, the independence of the total Rational Part R_1+R_2 on the chosen gauge. Read More

Achieving a precise description of multi-parton final states is crucial for many analyses at LHC. In this contribution we review the main features of the HELAC-NLO system for NLO QCD calculations. As a case study, NLO QCD corrections for tt + 2 jet production at LHC are illustrated and discussed. Read More

This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009. Read More

From an experimental point of view, clear signatures of multifragmentation have been detected by different experiments. On the other hand, from a theoretical point of view, many different models, built on the basis of totally different and often even contrasting assumptions, have been provided to explain them. In this contribution we show the capabilities and the shortcomings of one of this models, a QMD code developed by us and coupled to the nuclear de-excitation module taken from the multipurpose transport and interaction code FLUKA, in reproducing the multifragmentation observations recently reported by the INDRA collaboration for the reaction Nb + Mg at a 30 MeV/A projectile bombarding energy. Read More

We present the complete set of Feynman rules producing the rational terms of kind R_2 needed to perform any 1-loop calculation in the Electroweak Standard Model. Our results are given both in the 't Hooft-Veltman and in the Four Dimensional Helicity regularization schemes. We also verified, by using both the 't Hooft-Feynman gauge and the Background Field Method, a huge set of Ward identities -up to 4-points- for the complete rational part of the Electroweak amplitudes. Read More

We compute the complete set of Feynman Rules producing the Rational Terms of kind R_2 needed to perform any QCD 1-loop calculation. We also explicitly check that in order to account for the entire R_2 contribution, even in case of processes with more than four external legs, only up to four-point vertices are needed. Our results are expressed both in the 't Hooft Veltman regularization scheme and in the Four Dimensional Helicity scheme, using explicit color configurations as well as the color connection language. Read More

The overlapping stage of heavy-ion reactions can be simulated by dynamical microscopical models, such as those built on the basis of the Molecular Dynamics (MD) approaches, allowing to study the fragment formation process. The present performances of the Quantum MD (QMD) code developed at the University of Milano are discussed, showing results concerning fragment and particle production at bombarding energies up to $\lsim$ 700 MeV/A, as well as a preliminary analysis on the isoscaling behaviour of isotopic yield ratios for reactions with isospin composition N/Z in the (1 - 1.2) range, at a 45 MeV/A bombarding energy. Read More

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. Read More

Nucleon-ion and ion-ion collisions at non relativistic bombarding energies can be described by means of Monte Carlo approaches, such as those based on the Quantum Molecular Dynamics (QMD) model. We have developed a QMD code, to simulate the fast stage of heavy-ion reactions, and we have coupled it to the de-excitation module available in the FLUKA Monte Carlo transport and interaction code. The results presented in this work span the projectile bombarding energy range within 200 - 600 MeV/A, allowing to investigate the capabilities and limits of our non-relativistic QMD approach. Read More

Context: Faraday rotation measurements of extragalactic radio sources during coronal occultation allow assessment of both the electron density distribution and the three-dimensional magnetic field topology in the outer solar corona. Aims: We simulate the three-dimensional structure of both the coronal magnetic field and the electron density distribution in order to reproduce the excess Faraday rotation measures (RMs) of the occulted radio sources observed during solar activity minimum. In particular, we infer the tilt of the solar magnetic axis with respect to the rotation axis. Read More

FLUKA is a general purpose Monte Carlo transport and interaction code used for fundamental physics and for a wide range of applications. These include Cosmic Ray Physics (muons, neutrinos, EAS, underground physics), both for basic research and applied studies in space and atmospheric flight dosimetry and radiation damage. A review of the hadronic models available in FLUKA and relevant for the description of cosmic ray air showers is presented in this paper. Read More

Quantum Molecular Dynamics models (QMD) are Monte Carlo approaches targeted at the description of nucleon-ion and ion-ion collisions. We have developed a QMD code, which has been used for the simulation of the fast stage of ion-ion collisions, considering a wide range of system masses and system mass asymmetries. The slow stage of the collisions has been described by statistical methods. Read More

Heavy-ion collisions can be simulated by means of comprehensive approaches, to include the many different reaction mechanisms which may contribute. QMD models and their relativistic extensions are examples of these approaches based on Monte Carlo techniques. In this paper are shown some results obtained by coupling a new QMD code, which describes the fast stage of ion-ion collisions, to the evaporation /fission/Fermi break-up and photon de-excitation routines present in the FLUKA multipurpose Monte Carlo transport and interaction code. Read More

A new code, based on the Quantum Molecular Dynamics theoretical approach, has been developed and interfaced to the FLUKA evaporation/fission/Fermi break-up module. At present, this code is undergoing a series of validation tests. In this paper its predictions are compared to measured charged fragment yields and double differential neutron spectra in thin target heavy-ion reactions, at bombarding energies of about 100 MeV/A. Read More

A description of the intermediate and high energy hadronic interaction models used in the FLUKA code is given. Benchmarking against experimental data is also reported in order to validate the model performances. Finally the most recent developments and perspectives for nucleus-nucleus interactions are described together with some comparisons with experimental data. Read More

The main features of the FLUKA Monte Carlo code, which can deal with transport and interaction of electromagnetic and hadronic particles, are summarised. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against experimental data. A short history of the code is provided and the following examples of applications are discussed in detail: prediction of calorimetric performances, atmospheric neutrino flux calculations, dosimetry in atmosphere and radiobiology applications, including hadrontherapy and space radiation protection. Read More

We present the results of a Bayesian analysis of solar neutrino data in terms of nu_e->nu_{mu,tau} oscillations, independent from the Standard Solar Model predictions for the solar neutrino fluxes. We show that such a model independent analysis allows to constraint the values of the neutrino mixing parameters in limited regions around the usual SMA, LMA, LOW and VO regions. Furthermore, there is a strong indication in favor of large neutrino mixing and large values of Delta m^2 (LMA region). Read More

We present the results of a Bayesian analysis of solar neutrino data in terms of nu_e->nu_{mu,tau} and nu_e->nu_s oscillations, where nu_s is a sterile neutrino. We perform a Rates Analysis of the rates of solar neutrino experiments, including the first SNO CC result, and spectral data of the CHOOZ experiment, and a Global Analysis that takes into account also the Super-Kamiokande day and night electron energy spectra. We show that the Bayesian analysis does not suffer any problem from the inclusion of the numerous bins of the CHOOZ and Super-Kamiokande energy spectra and allows to reach the same conclusions on the favored type of neutrino transitions and on the determination of the most favored values of the oscillation parameters in both the Rates and Global Analysis. Read More

We estimate with Monte Carlo the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters obtained from the fit of solar neutrino data. We calculate allowed regions with correct frequentist coverage using the Crow-Gardner prescription of smallest acceptance intervals. We present also the results of a calculation of Bayesian allowed regions with a flat prior in the log(tan^2 theta)-log(Delta m^2) plane. Read More

We calculate with Monte Carlo the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters obtained from the fit of the total rates measured in solar neutrino experiments. We show that they are significantly overestimated in the standard method. We also calculate exact allowed regions with correct frequentist coverage. Read More

We present a Monte Carlo analysis in terms of neutrino oscillations of the total rates measured in solar neutrino experiments in the framework of frequentist statistics. We show that the goodness of fit and the confidence level of the allowed regions in the space of the neutrino oscillation parameters are significantly overestimated in the standard method. We also present a calculation of exact allowed regions with correct frequentist coverage. Read More