# M. Schaumann - RWTH Aachen University

## Contact Details

NameM. Schaumann |
||

AffiliationRWTH Aachen University |
||

CityAachen |
||

CountryGermany |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Experiment (4) Physics - Accelerator Physics (3) Nuclear Experiment (3) High Energy Physics - Phenomenology (2) Nuclear Theory (2) |

## Publications Authored By M. Schaumann

The unique physics opportunities accessible with nuclear collisions at the CERN Future Circular Collider (FCC) are summarized. Lead-lead (PbPb) and proton-lead (pPb) collisions at $\sqrt{s_{NN}}$ = 39 and 63 TeV respectively with $\mathcal{L}_{int}$ = 33 nb$^{-1}$ and 8 pb$^{-1}$ monthly integrated luminosities, will provide unprecedented experimental conditions to study quark-gluon matter at temperatures ${\cal O}$(1 GeV). The following topics are succinctly discussed: (i) charm-quark densities thrice larger than at the LHC, leading to direct heavy-quark impact in the bulk QGP properties, (ii) quarkonia, including $\Upsilon(1S)$, melting at temperatures up to five times above the QCD critical temperature, (iii) access to initial-state nuclear parton distributions (nPDF) at fractional momenta as low as $x\approx 10^{-7}$, (iv) availability of $5\cdot 10^5$ top-quark pairs per run to study the high-$x$ gluon nPDF and the energy loss properties of boosted colour-antennas, (v) study of possible Higgs boson suppression in the QGP, and (vi) high-luminosity $\gamma\gamma$ (ultraperipheral) collisions at c. Read More

**Authors:**A. Dainese

^{1}, U. A. Wiedemann

^{2}, N. Armesto

^{3}, D. d'Enterria

^{4}, J. M. Jowett

^{5}, J. -P. Lansberg

^{6}, J. G. Milhano

^{7}, C. A. Salgado

^{8}, M. Schaumann

^{9}, M. van Leeuwen

^{10}, J. L. Albacete, A. Andronic, P. Antonioli, L. Apolinario, S. Bass, A. Beraudo, A. Bilandzic, S. Borsanyi, P. Braun-Munzinger, Z. Chen, L. Cunqueiro Mendez, G. S. Denicol, K. J. Eskola, S. Floerchinger, H. Fujii, P. Giubellino, C. Greiner, J. F. Grosse-Oetringhaus, C. -M. Ko, P. Kotko, K. Krajczar, K. Kutak, M. Laine, Y. Liu, M. P. Lombardo, M. Luzum, C. Marquet, S. Masciocchi, V. Okorokov, J. -F. Paquet, H. Paukkunen, E. Petreska, T. Pierog, M. Ploskon, C. Ratti, A. H. Rezaeian, W. Riegler, J. Rojo, C. Roland, A. Rossi, G. P. Salam, S. Sapeta, R. Schicker, C. Schmidt, J. Stachel, J. Uphoff, A. van Hameren, K. Watanabe, B. -W. Xiao, F. Yuan, D. Zaslavsky, K. Zhou, P. Zhuang

**Affiliations:**

^{1}editors,

^{2}editors,

^{3}section editors,

^{4}section editors,

^{5}section editors,

^{6}section editors,

^{7}section editors,

^{8}section editors,

^{9}section editors,

^{10}section editors

The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. Read More

The hadron collider studied in the Future Circular Collider (FCC) project could operate with protons and lead ions in similar operation modes as the LHC. In this paper the potential performances in lead-lead, proton-lead and proton-proton collisions are investigated. Based on average lattice parameters, the strengths of intra-beam scattering and radiation damping are evaluated and their effect on the beam and luminosity evolution is presented. Read More

**Affiliations:**

^{1}RWTH Aachen U.,

^{2}CERN

**Category:**Physics - Accelerator Physics

For high bunch intensities the long-range beam-beam interactions are strong enough to provoke effects on the orbit. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are presented in this paper. Read More

**Authors:**T. R. Edgecock, O. Caretta, T. Davenne, C. Densham, M. Fitton, D. Kelliher, P. Loveridge, S. Machida, C. Prior, C. Rogers, M. Rooney, J. Thomason, D. Wilcox, E. Wildner, I. Efthymiopoulos, R. Garoby, S. Gilardoni, C. Hansen, E. Benedetto, E. Jensen, A. Kosmicki, M. Martini, J. Osborne, G. Prior, T. Stora, T. Melo-Mendonca, V. Vlachoudis, C. Waaijer, P. Cupial, A. Chancé, A. Longhin, J. Payet, M. Zito, E. Baussan, C. Bobeth, E. Bouquerel, M. Dracos, G. Gaudiot, B. Lepers, F. Osswald, P. Poussot, N. Vassilopoulos, J. Wurtz, V. Zeter, J. Bielski, M. Kozien, L. Lacny, B. Skoczen, B. Szybinski, A. Ustrycka, A. Wroblewski, M. Marie-Jeanne, P. Balint, C. Fourel, J. Giraud, J. Jacob, T. Lamy, L. Latrasse, P. Sortais, T. Thuillier, S. Mitrofanov, M. Loiselet, Th. Keutgen, Th. Delbar, F. Debray, C. Trophine, S. Veys, C. Daversin, V. Zorin, I. Izotov, V. Skalyga, G. Burt, A. C. Dexter, V. L. Kravchuk, T. Marchi, M. Cinausero, F. Gramegna, G. De Angelis, G. Prete, G. Collazuol, M. Laveder, M. Mazzocco, M. Mezzetto, C. Signorini, E. Vardaci, A. Di Nitto, A. Brondi, G. La Rana, P. Migliozzi, R. Moro, V. Palladino, N. Gelli, D. Berkovits, M. Hass, T. Y. Hirsh, M. Schaumann, A. Stahl, J. Wehner, A. Bross, J. Kopp, D. Neuffer, R. Wands, R. Bayes, A. Laing, P. Soler, S. K. Agarwalla, A. Cervera Villanueva, A. Donini, T. Ghosh, J. J. Gómez Cadenas, P. Hernández, J. Martín-Albo, O. Mena, J. Burguet-Castell, L. Agostino, M. Buizza-Avanzini, M. Marafini, T. Patzak, A. Tonazzo, D. Duchesneau, L. Mosca, M. Bogomilov, Y. Karadzhov, R. Matev, R. Tsenov, E. Akhmedov, M. Blennow, M. Lindner, T. Schwetz, E. Fernández Martinez, M. Maltoni, J. Menéndez, C. Giunti, M. C. González García, J. Salvado, P. Coloma, P. Huber, T. Li, J. López-Pavón, C. Orme, S. Pascoli, D. Meloni, J. Tang, W. Winter, T. Ohlsson, H. Zhang, L. Scotto-Lavina, F. Terranova, M. Bonesini, L. Tortora, A. Alekou, M. Aslaninejad, C. Bontoiu, A. Kurup, L. J. Jenner, K. Long, J. Pasternak, J. Pozimski, J. J. Back, P. Harrison, K. Beard, A. Bogacz, J. S. Berg, D. Stratakis, H. Witte, P. Snopok, N. Bliss, M. Cordwell, A. Moss, S. Pattalwar, M. Apollonio

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\'ejus tunnel. Read More