M. Muhlleitner - Psi, Villigen & LAPTH, Annecy

M. Muhlleitner
Are you M. Muhlleitner?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. Muhlleitner
Affiliation
Psi, Villigen & LAPTH, Annecy
City
Annecy
Country
France

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (19)

Publications Authored By M. Muhlleitner

Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the $\rho$ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. Read More

We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to $\mathcal{({\alpha}_t{\alpha}_s)}$. We identify the sources of discrepancies at the one- and at the two-loop level. Read More

The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. Read More

The N2HDM is based on the CP-conserving 2HDM extended by a real scalar singlet field. Its enlarged parameter space and its fewer symmetry conditions as compared to supersymmetric models allow for an interesting phenomenology compatible with current experimental constraints, while adding to the 2HDM sector the possibility of Higgs-to-Higgs decays with three different Higgs bosons. In this paper the N2HDM is subjected to detailed scrutiny. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

The detailed investigation of the Higgs sector at present and future colliders necessitates from the theory side as precise predictions as possible, including higher order corrections. An important ingredient for the computation of higher order corrections is the renormalization of the model parameters and fields. In this paper we complete the renormalization of the 2-Higgs-Doublet Model (2HDM) Higgs sector launched in a previous contribution with the investigation of the renormalization of the mixing angles $\alpha$ and $\beta$. Read More

The 2-Higgs-Doublet Model (2HDM) belongs to the simplest extensions of the Standard Model (SM) Higgs sector that are in accordance with theoretical and experimental constraints. In order to be able to properly investigate the experimental Higgs data and, in the long term to distinguish between possible models beyond the SM, precise predictions for the Higgs boson observables have to be made available on the theory side. This requires the inclusion of the higher order corrections. Read More

We present the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments. Important signatures for searches for natural new physics at the LHC and new assessments of the interplay between direct dark matter searches and the LHC are also considered. Read More

In composite Higgs models the Higgs boson arises as a pseudo-Goldstone boson from a strongly-interacting sector. Fermion mass generation is possible through partial compositeness accompanied by the appearance of new heavy fermionic resonances. The Higgs couplings to the Standard Model (SM) particles and between the Higgs bosons themselves are modified with respect to the SM. Read More

We study the decays of the lightest CP-even Higgs boson into a pair of pseudoscalar Higgs states within U(1)_N extensions of the MSSM. Read More

The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible. Read More

The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) features extra new sources for CP violation. In contrast to the MSSM CP violation can already occur at tree level in the Higgs sector. We investigate the range of possible allowed CP-violating phases by taking into account the constraints arising from the measurements of the Electric Dipole Moments (EDMs) and the latest LHC Higgs data. Read More

The publicly available spectrum generators for the NMSSM often lead to different predictions for the mass of the standard model-like Higgs boson even if using the same renormalization scheme and two-loop accuracy. Depending on the parameter point, the differences can exceed 5 GeV, and even reach 8 GeV for moderate superparticle masses of up to 2 TeV. It is shown here that these differences can be traced back to the calculation of the running standard model parameters entering all calculations, to the approximations used in the two-loop corrections included in the different codes, and to different choices for the renormalization conditions and scales. Read More

A consistent interpretation of the Higgs data requires the same precision in the Higgs boson masses and in the trilinear Higgs self-couplings, which are related through their common origin from the Higgs potential. In this work we provide the two-loop corrections at order ${\cal O}(\alpha_t \alpha_s)$ in the approximation of vanishing external momenta to the trilinear Higgs self-couplings in the CP-violating Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM). In the top/stop sector two different renormalization schemes have been implemented, the OS and the $\overline{\text{DR}}$ scheme. Read More

In view of the absence of any direct sign of New Physics (NP) at the LHC, the precise investigation of the Higgs properties becomes more and more important in our quest for physics beyond the Standard Model (SM). Coupling measurements play here an important role and not only complement the reach of the LHC but, depending on the physics scenarios, also allow for tests of NP scales beyond the ones accessible at present colliders. In this context, various representative scenarios beyond the SM will be reviewed. Read More

We compute the full next-to-leading order supersymmetric (SUSY) electroweak (EW) and SUSY-QCD corrections to the decays of CP-odd NMSSM Higgs bosons into stop pairs. In our numerical analysis we also present the decay of the heavier stop into the lighter stop and an NMSSM CP-odd Higgs boson. Both the EW and the SUSY-QCD corrections are found to be significant and have to be taken into account for a proper prediction of the decay widths. Read More

New Physics that becomes relevant at some high scale $\Lambda$ beyond the experimental reach, can be described in the effective theory approach by adding higher-dimensional operators to the Standard Model (SM) Lagrangian. In Higgs pair production through gluon fusion, which gives access to the trilinear Higgs self-coupling, this leads not only to modifications of the SM couplings but also induces novel couplings not present in the SM. For a proper prediction of the cross section, higher order QCD corrections that are important for this process, have to be taken into account. Read More

A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well. Read More

We investigate the decays of the light stop in scenarios with the lightest neutralino $\tilde{\chi}_1^0$ being the lightest supersymmetric particle, including flavour-violating (FV) effects. We analyse the region where the three-body decay $\tilde{t}_1\to W b \tilde{\chi}_1^0$ is kinematically allowed and provide a proper description of the transition region between the three-body decay and the four-body decay $\tilde{t}_1 \to\tilde{\chi}_1^0 b f \bar{f}'$. The improved treatment has been implemented in the Fortran package {\tt SUSY-HIT} and is used for the analysis of this region. Read More

We review recent results on higher-order calculations to squark and gluino production and decay at the LHC, as obtained within the Collaborative Research Centre / Transregio 9 "Computational Particle Physics". In particular, we discuss inclusive cross sections, including the summation of threshold corrections, higher-order calculations for specific squark production channels and for top squark decays, and next-to-leading order calculations for exclusive observables matched to parton showers. Read More

We discuss the interpretation of the LHC Higgs data and the test of the Higgs mechanism. This is done in a more model-independent approach relying on an effective Lagrangian, as well as in specific models like composite Higgs models and supersymmetric extensions of the Standard Model. The proper interpretation of the data requires the inclusion of higher-order corrections both for the relevant Higgs parameters and the production and decay processes. Read More

We provide the two-loop corrections to the Higgs boson masses of the CP-violating NMSSM in the Feynman diagrammatic approach with vanishing external momentum at ${\cal O} (\alpha_t \alpha_s)$. The adopted renormalization scheme is a mixture between $\overline{\text{DR}}$ and on-shell conditions. Additionally, the renormalization of the top/stop sector is provided both for the $\overline{\text{DR}}$ and the on-shell scheme. Read More

In U(1) extensions of the Minimal Supersymmetric extension of the Standard Model there is a simple mechanism that leads to a heavy Z' boson with a mass which is substantially larger than the supersymmetry breaking scale. This mechanism may also result in a pseudoscalar state that is light enough for decays of the 125 GeV Standard Model-like Higgs boson into a pair of such pseudoscalars to be kinematically allowed. We study these decays within E6 inspired supersymmetric models with an exact custodial symmetry that forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. Read More

Higgs physics beyond the Standard Model (SM) is presented in the context of an underlying strong dynamics of electroweak symmetry breaking (EWSB) as given by composite Higgs models. Subsequently, the study of New Physics (NP) effects in a more model-independent way through the effective Lagrangian approach is briefly sketched before moving on to the investigation of NP through Higgs coupling measurements. Depending on the precision on the extracted couplings, NP scales up to the TeV range can be probed at the high-luminosity option of the LHC, if the coupling deviations arise from mixing effects or from some underlying strong dynamics. Read More

We investigate the flavour-changing neutral current decay of the lightest stop into a charm quark and the lightest neutralino and its four-body decay into the lightest neutralino, a down-type quark and a fermion pair. These are the relevant stop search channels in the low-mass region. The SUSY-QCD corrections to the two-body decay have been calculated for the first time and turn out to be sizeable. Read More

We investigate the discovery prospects for NMSSM Higgs bosons during the 13~TeV run of the LHC. While one of the neutral Higgs bosons is demanded to have a mass around 125~GeV and Standard Model (SM)-like properties, there can be substantially lighter, nearby or heavier Higgs bosons, that have not been excluded yet by LEP, Tevatron or the 8~TeV run of the LHC. The challenge consists in discovering the whole NMSSM Higgs mass spectrum. Read More

Extending previous work on the predictions for the production of supersymmetric (SUSY) particles at the LHC, we present the fully differential calculation of the next-to-leading order (NLO) SUSY-QCD corrections to the production of squark and squark-antisquark pairs of the first two generations. The NLO cross sections are combined with the subsequent decay of the final state (anti)squarks into the lightest neutralino and (anti)quark at NLO SUSY-QCD. No assumptions on the squark masses are made, and the various subchannels are taken into account independently. Read More

We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 3--21 June, 2013). Our report includes new computational tool developments, studies of the implications of the Higgs boson discovery on new physics, important signatures for searches for natural new physics at the LHC, new studies of flavour aspects of new physics, and assessments of the interplay between direct dark matter searches and the LHC. Read More

The measured properties of the recently discovered Higgs boson are in good agreement with predictions from the Standard Model. However, small deviations in the Higgs couplings may manifest themselves once the currently large uncertainties will be improved as part of the LHC program and at a future Higgs factory. We review typical new physics scenarios that lead to observable modifications of the Higgs interactions. Read More

We present eHDECAY, a modified version of the program HDECAY which includes the full list of leading bosonic operators of the Higgs effective Lagrangian with a linear or non-linear realization of the electroweak symmetry and implements two benchmark composite Higgs models. Read More

In this note we give interim recommendations on how to evaluate LHC cross sections for (neutral) Higgs production and Higgs branching ratios in the general (CP-conserving) Two-Higgs-Doublet Model (2HDM). The current status of available higher-order corrections to Higgs production and decay in this model is discussed, and the existing public codes implementing these calculations are described. Numerical results are presented for a set of reference scenarios, demonstrating the very good agreement between the results obtained using different programs. Read More

We present the program package NMSSMCALC for the calculation of the loop-corrected NMSSM Higgs boson masses and decay widths in the CP-conserving and CP-violating NMSSM. The full one-loop corrections to the Higgs boson masses are evaluated in a mixed renormalisation scheme of on-shell and $\overline{\mbox{DR}}$ conditions. The Higgs decay widths include the dominant higher order QCD corrections, and the decays into bottom quarks, strange quarks and tau leptons are supplemented by higher order SUSY corrections through effective couplings. Read More

Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility of heavy bottom partners. Read More

2013Jul
Authors: The LHC Higgs Cross Section Working Group, S. Heinemeyer1, C. Mariotti2, G. Passarino3, R. Tanaka4, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

After the discovery of a Higgs-like boson by the LHC experiments ATLAS and CMS, it is of crucial importance to determine its properties in order to not only identify it as the boson responsible for electroweak symmetry breaking but also to clarify the question if it is a Standard Model (SM) Higgs boson or the Higgs particle of some extension beyond the SM as {\it e.g.} supersymmetry. Read More

The pair production of squarks is one of the main search channels for supersymmetry at the LHC. We present a fully differential calculation of the next-to-leading order (NLO) SUSY-QCD corrections to the on-shell production of a pair of squarks in the Minimal Supersymmetric Standard Model (MSSM), supplemented by the leading-order decay of the squarks to the lightest neutralino and a quark. In addition, we use the Powheg method to match our NLO calculation with parton showers. Read More

We reconsider the effective Lagrangian that describes a light Higgs-like boson and better clarify a few issues which were not exhaustively addressed in the previous literature. In particular we highlight the strategy to determine whether the dynamics responsible for the electroweak symmetry breaking is weakly or strongly interacting. We also discuss how the effective Lagrangian can be implemented into automatic tools for the calculation of Higgs decay rates and production cross sections. Read More

Now that the Higgs boson has been observed by the ATLAS and CMS experiments at the LHC, the next important step would be to measure accurately its properties to establish the details of the electroweak symmetry breaking mechanism. Among the measurements which need to be performed, the determination of the Higgs self-coupling in processes where the Higgs boson is produced in pairs is of utmost importance. In this paper, we discuss the various processes which allow for the measurement of the trilinear Higgs coupling: double Higgs production in the gluon fusion, vector boson fusion, double Higgs-strahlung and associated production with a top quark pair. Read More

We study the phenomenology of Higgs bosons close to 126 GeV within the scale invariant unconstrained next-to-minimal supersymmetric Standard Model (NMSSM), focusing on the regions of parameter space favoured by low fine-tuning considerations, namely stop masses of order 400 GeV to 1 TeV and an effective $\mu$ parameter between 100-200 GeV, with large (but perturbative) $\lambda$ and low $\tan \beta =$2-4. We perform scans over the above parameter space, focusing on the observable Higgs cross sections into $\gamma \gamma$, $WW$, $ZZ$, $bb$, $\tau \tau$ final states, and study the correlations between these observables. We show that the $\gamma \gamma$ signal strength may be enhanced up to a factor of about two not only due to the effect of singlet-doublet mixing, which occurs more often when the 126 GeV Higgs boson is the next-to-lightest CP-even one, but also due to light stops (and to a lesser extent light chargino and charged Higgs loops). Read More

We chart the theoretical basis of radiative decays of the Higgs boson, $H \to \gamma\gamma$ and $Z\gamma$, for measuring the spin of the Higgs particle. These decay channels are complementary to other rare modes such as real/virtual $Z$-boson pair-decays. In systematic helicity analyses the angular distribution for zero-spin is confronted with hypothetical spin-$2^\pm$ and higher assignments to quantify the sensitivity. Read More

The 8 TeV LHC Higgs search data just released indicates the existence of a scalar resonance with mass ~ 125 GeV. We examine the implications of the data reported by ATLAS, CMS and the Tevatron collaborations on understanding the properties of this scalar by performing joint fits on its couplings to other Standard Model particles. We discuss and characterize to what degree this resonance has the properties of the Standard Model (SM) Higgs, and consider what implications can be extracted for New Physics in a (mostly) model-independent fashion. Read More

The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. Read More

The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM) with a Higgs sector containing five neutral and two charged Higgs bosons allows for a rich phenomenology. In addition, the plethora of parameters provides many sources of CP violation. In contrast to the Minimal Supersymmetric Extension, CP violation in the Higgs sector is already possible at tree-level. Read More

We demonstrate by performing a global fit on Higgs signal strength data that large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs particle are currently consistent with the experimental hints of a scalar resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal strengths supplied by ATLAS, CMS and the Tevatron collaborations. Read More

2012Mar
Authors: G. Brooijmans, B. Gripaios, F. Moortgat, J. Santiago, P. Skands, D. Albornoz Vásquez, B. C. Allanach, A. Alloul, A. Arbey, A. Azatov, H. Baer, C. Balázs, A. Barr, L. Basso, M. Battaglia, P. Bechtle, G. Bélanger, A. Belyaev, K. Benslama, L. Bergström, A. Bharucha, C. Boehm, M. Bondarenko, O. Bondu, E. Boos, F. Boudjema, T. Bringmann, M. Brown, V. Bunichev, S. Calvet, M. Campanelli, A. Carmona, D. G. Cerdeño, M. Chala, R. S. Chivukula, D. Chowdhury, N. D. Christensen, M. Cirelli, S. Cox, K. Cranmer, J. Da Silva, T. Delahaye, A. De Roeck, A. Djouadi, E. Dobson, M. Dolan, F. Donato, G. Drieu La Rochelle, G. Duda, C. Duhr, B. Dumont, J. Edsjö, J. Ellis, C. Evoli, A. Falkowski, M. Felcini, B. Fuks, E. Gabrielli, D. Gaggero, S. Gascon-Shotkin, D. K. Ghosh, A. Giammanco, R. M. Godbole, P. Gondolo, T. Goto, D. Grasso, P. Gris, D. Guadagnoli, J. F. Gunion, U. Haisch, L. Hartgring, S. Heinemeyer, M. Hirsch, J. Hewett, A. Ismail, T. Jeltema, M. Kadastik, M. Kakizaki, K. Kannike, S. Khalil, J-L. Kneur, M. Krämer, S. Kraml, S. Kreiss, J. Lavalle, R. Leane, J. Lykken, L. Maccione, F. Mahmoudi, M. Mangano, S. P. Martin, D. Maurin, G. Moreau, S. Moretti, I. Moskalenko, G. Moultaka, M. Muhlleitner, I. Niessen, B. O'Leary, E. Orlando, P. Panci, G. Polesello, W. Porod, T. Porter, S. Profumo, H. Prosper, A. Pukhov, A. Racioppi, M. Raidal, M. Rausch de Traubenberg, A. Renaud, J. Reuter, T. G. Rizzo, T. Robens, A. Y. Rodríguez-Marrero, P. Salati, C. Savage, P. Scott, S. Sekmen, A. Semenov, C. -L. Shan, C. Shepherd-Themistocleous, E. H. Simmons, P. Slavich, C. Speckner, F. Staub, A. Strong, R. Taillet, F. S. Thomas, M. C. Thomas, I. Tomalin, M. Tytgat, M. Ughetto, L. Valéry, D. G. E. Walker, A. Weiler, S. M. West, C. D. White, A. J. Williams, A. Wingerter, C. Wymant, J. -H. Yu, C. -P. Yuan, D. Zerwas

We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 30 May-17 June, 2011). Our report includes new agreements on formats for interfaces between computational tools, new tool developments, important signatures for searches at the LHC, recommendations for presentation of LHC search results, as well as additional phenomenological studies. Read More

We outline a method for characterizing deviations from the properties of a Standard Model (SM) Higgs boson. We apply it to current data in order to characterize up to which degree the SM Higgs boson interpretation is consistent with experiment. We find that the SM Higgs boson is consistent with the current data set at the 82 % confidence level, based on data of excess events reported by CMS and ATLAS, which are interpreted to be related to the mass scale mh = 124-126 GeV, and on published CL_s exclusion regions. Read More

2012Jan
Authors: LHC Higgs Cross Section Working Group, S. Dittmaier1, C. Mariotti2, G. Passarino3, R. Tanaka4, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

The recent LHC indications of a SM-like Higgs boson near 125 GeV are consistent not only with the Standard Model (SM) but also with Supersymmetry (SUSY). However naturalness arguments disfavour the Minimal Supersymmetric Standard Model (MSSM). We consider the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with a SM-like Higgs boson near 125 GeV involving relatively light stops and gluinos below 1 TeV in order to satisfy naturalness requirements. Read More

For a reliable prediction of the NMSSM Higgs boson signatures at present and future high-energy colliders and a proper distinction of the NMSSM and MSSM Higgs sector the precise knowledge of the Higgs boson masses including higher-order corrections is indispensable. In this paper, the one-loop corrections to the neutral NMSSM Higgs boson masses and mixings are calculated in three different renormalisation schemes. In addition to the $\bar{DR}$ renormalisation scheme, existing in the literature, two other schemes are adopted. Read More

In this paper we investigate methods to study the $t\bar{t}$ Higgs coupling. The spin and CP properties of a Higgs boson are analysed in a model-independent way in its associated production with a $t\bar{t}$ pair in high-energy $e^+e^-$ collisions. We study the prospects of establishing the CP quantum numbers of the Higgs boson in the CP-conserving case as well as those of determining the CP-mixing if CP is violated. Read More