M. Liang - The Jefferson Lab Fpi Collaboration

M. Liang
Are you M. Liang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. Liang
Affiliation
The Jefferson Lab Fpi Collaboration
Location

Pubs By Year

Pub Categories

 
Quantum Physics (22)
 
Physics - Superconductivity (5)
 
Nuclear Experiment (5)
 
Instrumentation and Methods for Astrophysics (5)
 
Cosmology and Nongalactic Astrophysics (4)
 
Computer Science - Cryptography and Security (4)
 
Earth and Planetary Astrophysics (3)
 
Mathematics - Combinatorics (2)
 
High Energy Physics - Experiment (2)
 
Physics - Strongly Correlated Electrons (2)
 
Physics - Optics (2)
 
Physics - Data Analysis; Statistics and Probability (1)
 
Astrophysics (1)
 
Computer Science - Computational Complexity (1)
 
Solar and Stellar Astrophysics (1)
 
Astrophysics of Galaxies (1)
 
Physics - Atomic and Molecular Clusters (1)
 
Nuclear Theory (1)
 
Quantitative Biology - Genomics (1)
 
Computer Science - Information Theory (1)
 
Mathematics - Information Theory (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)

Publications Authored By M. Liang

For an undirected simple graph $G$, we write $G \rightarrow (H_1, H_2)^v$ if and only if for every red-blue coloring of its vertices there exists a red $H_1$ or a blue $H_2$. The generalized vertex Folkman number $F_v(H_1, H_2; H)$ is defined as the smallest integer $n$ for which there exists an $H$-free graph $G$ of order $n$ such that $G \rightarrow (H_1, H_2)^v$. The generalized edge Folkman numbers $F_e(H_1, H_2; H)$ are defined similarly, when colorings of the edges are considered. Read More

We study the sequential unambiguous state discrimination (SSD) with an ancilla system for initial states prepared with arbitrary \emph{priori} probabilities. The results are compared with some strategies that allow classical communication. It's found that the optimal success probability of SSD is enhanced by the deviation from equal probability. Read More

For graph $G$ and integers $a_1 \ge \cdots \ge a_r \ge 2$, we write $G \rightarrow (a_1 ,\cdots ,a_r)^v$ if and only if for every $r$-coloring of the vertex set $V(G)$ there exists a monochromatic $K_{a_i}$ in $G$ for some color $i \in \{1, \cdots, r\}$. The vertex Folkman number $F_v(a_1 ,\cdots ,a_r; s)$ is defined as the smallest integer $n$ for which there exists a $K_s$-free graph $G$ of order $n$ such that $G \rightarrow (a_1 ,\cdots ,a_r)^v$. It is well known that if $G \rightarrow (a_1 ,\cdots ,a_r)^v$ then $\chi(G) \geq m$, where $m = 1+ \sum_{i=1}^r (a_i - 1)$. Read More

2016Oct
Authors: DESI Collaboration, Amir Aghamousa, Jessica Aguilar, Steve Ahlen, Shadab Alam, Lori E. Allen, Carlos Allende Prieto, James Annis, Stephen Bailey, Christophe Balland, Otger Ballester, Charles Baltay, Lucas Beaufore, Chris Bebek, Timothy C. Beers, Eric F. Bell, José Luis Bernal, Robert Besuner, Florian Beutler, Chris Blake, Hannes Bleuler, Michael Blomqvist, Robert Blum, Adam S. Bolton, Cesar Briceno, David Brooks, Joel R. Brownstein, Elizabeth Buckley-Geer, Angela Burden, Etienne Burtin, Nicolas G. Busca, Robert N. Cahn, Yan-Chuan Cai, Laia Cardiel-Sas, Raymond G. Carlberg, Pierre-Henri Carton, Ricard Casas, Francisco J. Castander, Jorge L. Cervantes-Cota, Todd M. Claybaugh, Madeline Close, Carl T. Coker, Shaun Cole, Johan Comparat, Andrew P. Cooper, M. -C. Cousinou, Martin Crocce, Jean-Gabriel Cuby, Daniel P. Cunningham, Tamara M. Davis, Kyle S. Dawson, Axel de la Macorra, Juan De Vicente, Timothée Delubac, Mark Derwent, Arjun Dey, Govinda Dhungana, Zhejie Ding, Peter Doel, Yutong T. Duan, Anne Ealet, Jerry Edelstein, Sarah Eftekharzadeh, Daniel J. Eisenstein, Ann Elliott, Stéphanie Escoffier, Matthew Evatt, Parker Fagrelius, Xiaohui Fan, Kevin Fanning, Arya Farahi, Jay Farihi, Ginevra Favole, Yu Feng, Enrique Fernandez, Joseph R. Findlay, Douglas P. Finkbeiner, Michael J. Fitzpatrick, Brenna Flaugher, Samuel Flender, Andreu Font-Ribera, Jaime E. Forero-Romero, Pablo Fosalba, Carlos S. Frenk, Michele Fumagalli, Boris T. Gaensicke, Giuseppe Gallo, Juan Garcia-Bellido, Enrique Gaztanaga, Nicola Pietro Gentile Fusillo, Terry Gerard, Irena Gershkovich, Tommaso Giannantonio, Denis Gillet, Guillermo Gonzalez-de-Rivera, Violeta Gonzalez-Perez, Shelby Gott, Or Graur, Gaston Gutierrez, Julien Guy, Salman Habib, Henry Heetderks, Ian Heetderks, Katrin Heitmann, Wojciech A. Hellwing, David A. Herrera, Shirley Ho, Stephen Holland, Klaus Honscheid, Eric Huff, Timothy A. Hutchinson, Dragan Huterer, Ho Seong Hwang, Joseph Maria Illa Laguna, Yuzo Ishikawa, Dianna Jacobs, Niall Jeffrey, Patrick Jelinsky, Elise Jennings, Linhua Jiang, Jorge Jimenez, Jennifer Johnson, Richard Joyce, Eric Jullo, Stéphanie Juneau, Sami Kama, Armin Karcher, Sonia Karkar, Robert Kehoe, Noble Kennamer, Stephen Kent, Martin Kilbinger, Alex G. Kim, David Kirkby, Theodore Kisner, Ellie Kitanidis, Jean-Paul Kneib, Sergey Koposov, Eve Kovacs, Kazuya Koyama, Anthony Kremin, Richard Kron, Luzius Kronig, Andrea Kueter-Young, Cedric G. Lacey, Robin Lafever, Ofer Lahav, Andrew Lambert, Michael Lampton, Martin Landriau, Dustin Lang, Tod R. Lauer, Jean-Marc Le Goff, Laurent Le Guillou, Auguste Le Van Suu, Jae Hyeon Lee, Su-Jeong Lee, Daniela Leitner, Michael Lesser, Michael E. Levi, Benjamin L'Huillier, Baojiu Li, Ming Liang, Huan Lin, Eric Linder, Sarah R. Loebman, Zarija Lukić, Jun Ma, Niall MacCrann, Christophe Magneville, Laleh Makarem, Marc Manera, Christopher J. Manser, Robert Marshall, Paul Martini, Richard Massey, Thomas Matheson, Jeremy McCauley, Patrick McDonald, Ian D. McGreer, Aaron Meisner, Nigel Metcalfe, Timothy N. Miller, Ramon Miquel, John Moustakas, Adam Myers, Milind Naik, Jeffrey A. Newman, Robert C. Nichol, Andrina Nicola, Luiz Nicolati da Costa, Jundan Nie, Gustavo Niz, Peder Norberg, Brian Nord, Dara Norman, Peter Nugent, Thomas O'Brien, Minji Oh, Knut A. G. Olsen, Cristobal Padilla, Hamsa Padmanabhan, Nikhil Padmanabhan, Nathalie Palanque-Delabrouille, Antonella Palmese, Daniel Pappalardo, Isabelle Pâris, Changbom Park, Anna Patej, John A. Peacock, Hiranya V. Peiris, Xiyan Peng, Will J. Percival, Sandrine Perruchot, Matthew M. Pieri, Richard Pogge, Jennifer E. Pollack, Claire Poppett, Francisco Prada, Abhishek Prakash, Ronald G. Probst, David Rabinowitz, Anand Raichoor, Chang Hee Ree, Alexandre Refregier, Xavier Regal, Beth Reid, Kevin Reil, Mehdi Rezaie, Constance M. Rockosi, Natalie Roe, Samuel Ronayette, Aaron Roodman, Ashley J. Ross, Nicholas P. Ross, Graziano Rossi, Eduardo Rozo, Vanina Ruhlmann-Kleider, Eli S. Rykoff, Cristiano Sabiu, Lado Samushia, Eusebio Sanchez, Javier Sanchez, David J. Schlegel, Michael Schneider, Michael Schubnell, Aurélia Secroun, Uros Seljak, Hee-Jong Seo, Santiago Serrano, Arman Shafieloo, Huanyuan Shan, Ray Sharples, Michael J. Sholl, William V. Shourt, Joseph H. Silber, David R. Silva, Martin M. Sirk, Anze Slosar, Alex Smith, George F. Smoot, Debopam Som, Yong-Seon Song, David Sprayberry, Ryan Staten, Andy Stefanik, Gregory Tarle, Suk Sien Tie, Jeremy L. Tinker, Rita Tojeiro, Francisco Valdes, Octavio Valenzuela, Monica Valluri, Mariana Vargas-Magana, Licia Verde, Alistair R. Walker, Jiali Wang, Yuting Wang, Benjamin A. Weaver, Curtis Weaverdyck, Risa H. Wechsler, David H. Weinberg, Martin White, Qian Yang, Christophe Yeche, Tianmeng Zhang, Gong-Bo Zhao, Yi Zheng, Xu Zhou, Zhimin Zhou, Yaling Zhu, Hu Zou, Ying Zu

DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to $z=1. Read More

2016Oct
Authors: DESI Collaboration, Amir Aghamousa, Jessica Aguilar, Steve Ahlen, Shadab Alam, Lori E. Allen, Carlos Allende Prieto, James Annis, Stephen Bailey, Christophe Balland, Otger Ballester, Charles Baltay, Lucas Beaufore, Chris Bebek, Timothy C. Beers, Eric F. Bell, José Luis Bernal, Robert Besuner, Florian Beutler, Chris Blake, Hannes Bleuler, Michael Blomqvist, Robert Blum, Adam S. Bolton, Cesar Briceno, David Brooks, Joel R. Brownstein, Elizabeth Buckley-Geer, Angela Burden, Etienne Burtin, Nicolas G. Busca, Robert N. Cahn, Yan-Chuan Cai, Laia Cardiel-Sas, Raymond G. Carlberg, Pierre-Henri Carton, Ricard Casas, Francisco J. Castander, Jorge L. Cervantes-Cota, Todd M. Claybaugh, Madeline Close, Carl T. Coker, Shaun Cole, Johan Comparat, Andrew P. Cooper, M. -C. Cousinou, Martin Crocce, Jean-Gabriel Cuby, Daniel P. Cunningham, Tamara M. Davis, Kyle S. Dawson, Axel de la Macorra, Juan De Vicente, Timothée Delubac, Mark Derwent, Arjun Dey, Govinda Dhungana, Zhejie Ding, Peter Doel, Yutong T. Duan, Anne Ealet, Jerry Edelstein, Sarah Eftekharzadeh, Daniel J. Eisenstein, Ann Elliott, Stéphanie Escoffier, Matthew Evatt, Parker Fagrelius, Xiaohui Fan, Kevin Fanning, Arya Farahi, Jay Farihi, Ginevra Favole, Yu Feng, Enrique Fernandez, Joseph R. Findlay, Douglas P. Finkbeiner, Michael J. Fitzpatrick, Brenna Flaugher, Samuel Flender, Andreu Font-Ribera, Jaime E. Forero-Romero, Pablo Fosalba, Carlos S. Frenk, Michele Fumagalli, Boris T. Gaensicke, Giuseppe Gallo, Juan Garcia-Bellido, Enrique Gaztanaga, Nicola Pietro Gentile Fusillo, Terry Gerard, Irena Gershkovich, Tommaso Giannantonio, Denis Gillet, Guillermo Gonzalez-de-Rivera, Violeta Gonzalez-Perez, Shelby Gott, Or Graur, Gaston Gutierrez, Julien Guy, Salman Habib, Henry Heetderks, Ian Heetderks, Katrin Heitmann, Wojciech A. Hellwing, David A. Herrera, Shirley Ho, Stephen Holland, Klaus Honscheid, Eric Huff, Timothy A. Hutchinson, Dragan Huterer, Ho Seong Hwang, Joseph Maria Illa Laguna, Yuzo Ishikawa, Dianna Jacobs, Niall Jeffrey, Patrick Jelinsky, Elise Jennings, Linhua Jiang, Jorge Jimenez, Jennifer Johnson, Richard Joyce, Eric Jullo, Stéphanie Juneau, Sami Kama, Armin Karcher, Sonia Karkar, Robert Kehoe, Noble Kennamer, Stephen Kent, Martin Kilbinger, Alex G. Kim, David Kirkby, Theodore Kisner, Ellie Kitanidis, Jean-Paul Kneib, Sergey Koposov, Eve Kovacs, Kazuya Koyama, Anthony Kremin, Richard Kron, Luzius Kronig, Andrea Kueter-Young, Cedric G. Lacey, Robin Lafever, Ofer Lahav, Andrew Lambert, Michael Lampton, Martin Landriau, Dustin Lang, Tod R. Lauer, Jean-Marc Le Goff, Laurent Le Guillou, Auguste Le Van Suu, Jae Hyeon Lee, Su-Jeong Lee, Daniela Leitner, Michael Lesser, Michael E. Levi, Benjamin L'Huillier, Baojiu Li, Ming Liang, Huan Lin, Eric Linder, Sarah R. Loebman, Zarija Lukić, Jun Ma, Niall MacCrann, Christophe Magneville, Laleh Makarem, Marc Manera, Christopher J. Manser, Robert Marshall, Paul Martini, Richard Massey, Thomas Matheson, Jeremy McCauley, Patrick McDonald, Ian D. McGreer, Aaron Meisner, Nigel Metcalfe, Timothy N. Miller, Ramon Miquel, John Moustakas, Adam Myers, Milind Naik, Jeffrey A. Newman, Robert C. Nichol, Andrina Nicola, Luiz Nicolati da Costa, Jundan Nie, Gustavo Niz, Peder Norberg, Brian Nord, Dara Norman, Peter Nugent, Thomas O'Brien, Minji Oh, Knut A. G. Olsen, Cristobal Padilla, Hamsa Padmanabhan, Nikhil Padmanabhan, Nathalie Palanque-Delabrouille, Antonella Palmese, Daniel Pappalardo, Isabelle Pâris, Changbom Park, Anna Patej, John A. Peacock, Hiranya V. Peiris, Xiyan Peng, Will J. Percival, Sandrine Perruchot, Matthew M. Pieri, Richard Pogge, Jennifer E. Pollack, Claire Poppett, Francisco Prada, Abhishek Prakash, Ronald G. Probst, David Rabinowitz, Anand Raichoor, Chang Hee Ree, Alexandre Refregier, Xavier Regal, Beth Reid, Kevin Reil, Mehdi Rezaie, Constance M. Rockosi, Natalie Roe, Samuel Ronayette, Aaron Roodman, Ashley J. Ross, Nicholas P. Ross, Graziano Rossi, Eduardo Rozo, Vanina Ruhlmann-Kleider, Eli S. Rykoff, Cristiano Sabiu, Lado Samushia, Eusebio Sanchez, Javier Sanchez, David J. Schlegel, Michael Schneider, Michael Schubnell, Aurélia Secroun, Uros Seljak, Hee-Jong Seo, Santiago Serrano, Arman Shafieloo, Huanyuan Shan, Ray Sharples, Michael J. Sholl, William V. Shourt, Joseph H. Silber, David R. Silva, Martin M. Sirk, Anze Slosar, Alex Smith, George F. Smoot, Debopam Som, Yong-Seon Song, David Sprayberry, Ryan Staten, Andy Stefanik, Gregory Tarle, Suk Sien Tie, Jeremy L. Tinker, Rita Tojeiro, Francisco Valdes, Octavio Valenzuela, Monica Valluri, Mariana Vargas-Magana, Licia Verde, Alistair R. Walker, Jiali Wang, Yuting Wang, Benjamin A. Weaver, Curtis Weaverdyck, Risa H. Wechsler, David H. Weinberg, Martin White, Qian Yang, Christophe Yeche, Tianmeng Zhang, Gong-Bo Zhao, Yi Zheng, Xu Zhou, Zhimin Zhou, Yaling Zhu, Hu Zou, Ying Zu

DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. The DESI instrument is a robotically-actuated, fiber-fed spectrograph capable of taking up to 5,000 simultaneous spectra over a wavelength range from 360 nm to 980 nm. The fibers feed ten three-arm spectrographs with resolution $R= \lambda/\Delta\lambda$ between 2000 and 5500, depending on wavelength. Read More

The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze, suggest that the haze particles are fractal aggregates, analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. Read More

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

The Auto-Importance Sampling (AIS) method is a Monte Carlo variance reduction technique proposed for deep penetration problems, which can significantly improve computational efficiency without pre-calculations for importance distribution. However, the AIS method is only validated with several simple examples, and cannot be used for coupled neutron-photon transport. This paper presents the improved algorithms for the AIS method, including particle transport, fictitious particles creation and adjustment, fictitious surface geometry, random number allocation and calculation of the estimated relative error. Read More

To date, most genetic analyses of phenotypes have focused on analyzing single traits or, analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power, and hold the key to understanding the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. Read More

We report magneto-transport measurements on a superconducting molybdenum-germanium (MoGe) film of thickness $d$=50 nm in parallel magnetic fields and show evidence of a transition from a Meissner state to a resistive state of spontaneous perpendicular vortices generated by thermal fluctuations above a certain temperature $T>T_v(B)$. Here $T_v$ appears to match the vortex core explosion condition $d\approx 4.4\xi(T_v)$, where $\xi$ is the coherence length. Read More

Blind quantum computation (BQC) enables a client without enough quantum power to delegate his quantum computation to a quantum server, while keeping the input data, the algorithm and the result unknown to the server. In the studies of practical BQC protocol, an important problem is how to reduce the quantum requirement of the client. Multi-server BQC protocols have been proposed to solve this problem. Read More

The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. Read More

Fully homomorphic encryption is a kind of encryption scheme, which enables arbitrary computation on encrypted data without accessing the data. We present the quantum version of fully homomorphic encryption scheme, which is constructed based on quantum fault-tolerant construction. Two schemes are constructed. Read More

This paper investigates a quantum version of McEliece public-key encryption (PKE) scheme, and analyzes its security. As is well known, the security of classical McEliece PKE is not stronger than the onewayness of related classical one-way function. We prove the security of quantum McEliece PKE ranks between them. Read More

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, $Q^2$, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in $\pi^-$ and $\pi^+$ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Read More

Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on an encrypted data. Read More

A set $\{a_i\:|\: 1\leq i \leq k\}$ of non-negative integers is a Golomb ruler if differences $a_i-a_j$, for any $i \neq j$, are all distinct. A set of $I$ disjoint Golomb rulers (DGR) each being a $J$-subset of $\{1,2,\cdots, n\}$ is called an $(I,J,n)-DGR$. Let $H(I, J)$ be the least positive $n$ such that there is an $(I,J,n)-DGR$. Read More

2014Apr
Affiliations: 1The Jefferson Lab Fpi Collaboration, 2The Jefferson Lab Fpi Collaboration, 3The Jefferson Lab Fpi Collaboration, 4The Jefferson Lab Fpi Collaboration, 5The Jefferson Lab Fpi Collaboration, 6The Jefferson Lab Fpi Collaboration, 7The Jefferson Lab Fpi Collaboration, 8The Jefferson Lab Fpi Collaboration, 9The Jefferson Lab Fpi Collaboration, 10The Jefferson Lab Fpi Collaboration, 11The Jefferson Lab Fpi Collaboration, 12The Jefferson Lab Fpi Collaboration, 13The Jefferson Lab Fpi Collaboration, 14The Jefferson Lab Fpi Collaboration, 15The Jefferson Lab Fpi Collaboration, 16The Jefferson Lab Fpi Collaboration, 17The Jefferson Lab Fpi Collaboration, 18The Jefferson Lab Fpi Collaboration, 19The Jefferson Lab Fpi Collaboration, 20The Jefferson Lab Fpi Collaboration, 21The Jefferson Lab Fpi Collaboration, 22The Jefferson Lab Fpi Collaboration, 23The Jefferson Lab Fpi Collaboration, 24The Jefferson Lab Fpi Collaboration, 25The Jefferson Lab Fpi Collaboration, 26The Jefferson Lab Fpi Collaboration, 27The Jefferson Lab Fpi Collaboration, 28The Jefferson Lab Fpi Collaboration, 29The Jefferson Lab Fpi Collaboration, 30The Jefferson Lab Fpi Collaboration, 31The Jefferson Lab Fpi Collaboration, 32The Jefferson Lab Fpi Collaboration, 33The Jefferson Lab Fpi Collaboration, 34The Jefferson Lab Fpi Collaboration, 35The Jefferson Lab Fpi Collaboration, 36The Jefferson Lab Fpi Collaboration, 37The Jefferson Lab Fpi Collaboration, 38The Jefferson Lab Fpi Collaboration, 39The Jefferson Lab Fpi Collaboration, 40The Jefferson Lab Fpi Collaboration, 41The Jefferson Lab Fpi Collaboration, 42The Jefferson Lab Fpi Collaboration, 43The Jefferson Lab Fpi Collaboration, 44The Jefferson Lab Fpi Collaboration, 45The Jefferson Lab Fpi Collaboration, 46The Jefferson Lab Fpi Collaboration, 47The Jefferson Lab Fpi Collaboration, 48The Jefferson Lab Fpi Collaboration, 49The Jefferson Lab Fpi Collaboration, 50The Jefferson Lab Fpi Collaboration, 51The Jefferson Lab Fpi Collaboration, 52The Jefferson Lab Fpi Collaboration, 53The Jefferson Lab Fpi Collaboration, 54The Jefferson Lab Fpi Collaboration, 55The Jefferson Lab Fpi Collaboration, 56The Jefferson Lab Fpi Collaboration, 57The Jefferson Lab Fpi Collaboration, 58The Jefferson Lab Fpi Collaboration, 59The Jefferson Lab Fpi Collaboration, 60The Jefferson Lab Fpi Collaboration, 61The Jefferson Lab Fpi Collaboration, 62The Jefferson Lab Fpi Collaboration, 63The Jefferson Lab Fpi Collaboration, 64The Jefferson Lab Fpi Collaboration, 65The Jefferson Lab Fpi Collaboration, 66The Jefferson Lab Fpi Collaboration, 67The Jefferson Lab Fpi Collaboration, 68The Jefferson Lab Fpi Collaboration, 69The Jefferson Lab Fpi Collaboration, 70The Jefferson Lab Fpi Collaboration, 71The Jefferson Lab Fpi Collaboration, 72The Jefferson Lab Fpi Collaboration, 73The Jefferson Lab Fpi Collaboration, 74The Jefferson Lab Fpi Collaboration, 75The Jefferson Lab Fpi Collaboration, 76The Jefferson Lab Fpi Collaboration, 77The Jefferson Lab Fpi Collaboration, 78The Jefferson Lab Fpi Collaboration, 79The Jefferson Lab Fpi Collaboration, 80The Jefferson Lab Fpi Collaboration, 81The Jefferson Lab Fpi Collaboration, 82The Jefferson Lab Fpi Collaboration, 83The Jefferson Lab Fpi Collaboration, 84The Jefferson Lab Fpi Collaboration, 85The Jefferson Lab Fpi Collaboration, 86The Jefferson Lab Fpi Collaboration, 87The Jefferson Lab Fpi Collaboration, 88The Jefferson Lab Fpi Collaboration

The study of exclusive $\pi^{\pm}$ electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio $R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+}$ is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of $R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+}$ from unity at small $-t$, to 1/4 at large $-t$, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Read More

We construct a terahertz time-domain spectrometer (THz-TDS) system based on photoconductive antenna (PCA). A 800 nm Ti sapphire femtosecond laser with 80 MHz repetition rate provides the pump and probe laser pulse, which has a 45 fs pulse width (as short as 15 fs is available) and as much as 400 mW power. Two commercial PCAs with 34 um and 6 um gap size are used as the emitter and receiver, respectively. Read More

A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Read More

Inadequate service availability is the top concern when employing Cloud computing. It has been recognized that zero downtime is impossible for large-scale Internet services. By learning from the previous and others' mistakes, nevertheless, it is possible for Cloud vendors to minimize the risk of future downtime or at least keep the downtime short. Read More

We present a unified view of the Berry phase of a quantum system and its entanglement with surroundings. The former reflects the nonseparability between a system and a classical environment as the latter for a quantum environment, and the concept of geometric time-energy uncertainty can be adopted as a signature of the nonseparability. Based on this viewpoint, we study their relationship in the quantum-classical transition of the environment, with the aid of a spin-half particle (qubit) model exposed to a quantum-classical hybrid field. Read More

This paper proposes a model of tripartite blind quantum computation (TBQC), in which three independent participants hold different resources and accomplish a computational task through cooperation. The three participants are called C,S,T separately, where C needs to compute on his private data, and T has the required quantum algorithm, and S provides sufficient quantum computational resources. Then two concrete TBQC protocols are constructed. Read More

We study the procedure for sequential unambiguous state discrimination. A qubit is prepared in one of two possible states, and measured by two observers Bob and Charlie sequentially. A necessary condition for the state to be unambiguously discriminated by Charlie is the absence of entanglement between the principal qubit, prepared by Alice, and Bob's auxiliary system. Read More

This paper studies secure multiparty quantum computation (SMQC) without nonlocal measurements. Firstly, this task is reduced to secure two-party quantum computation of nonlocal controlled-NOT (NL-CNOT) gate. Then, in the passive adversaries model, the secure computation of NL-CNOT is reduced to bit commitment. Read More

Suppose some data have been encrypted, can you compute with the data without decrypting them? This problem has been studied as homomorphic encryption and blind computing. We consider this problem in the context of quantum information processing, and present the definitions of quantum homomorphic encryption (QHE) and quantum fully homomorphic encryption (QFHE). Then, based on quantum one-time pad (QOTP), we construct a symmetric QFHE scheme, where the evaluate algorithm depends on the secret key. Read More

For a spin-1/2 particle moving in a background magnetic field in noncommutative phase space, Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It is shown that the motion of the charged particle along the magnetic field has the effect to increase the magnetic field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical picture: Along an effective magnetic field the mechanical momentum is conserved and the motion perpendicular to the effective magnetic field follows a round orbit. Read More

Inspired by Fujita's analysis [Quantum inf. & comput. 12(3&4), 2012], we suggest a twice-encryption scheme to improve the security of the original quantum McEliece public-key encryption algorithm. Read More

We study cryptography based on operator theory, and propose quantum no-key (QNK) protocols from the perspective of operator theory, then present a framework of QNK protocols. The framework is expressed in two forms: trace-preserving quantum operators and natural presentations. Then we defined the information-theoretical security of QNK protocols and the security of identification keys. Read More

2012May
Authors: H. Fonvieille1, G. Laveissiere2, N. Degrande3, S. Jaminion4, C. Jutier5, L. Todor6, R. Di Salvo7, L. Van Hoorebeke8, L. C. Alexa9, B. D. Anderson10, K. A. Aniol11, K. Arundell12, G. Audit13, L. Auerbach14, F. T. Baker15, M. Baylac16, J. Berthot17, P. Y. Bertin18, W. Bertozzi19, L. Bimbot20, W. U. Boeglin21, E. J. Brash22, V. Breton23, H. Breuer24, E. Burtin25, J. R. Calarco26, L. S. Cardman27, C. Cavata28, C. -C. Chang29, J. -P. Chen30, E. Chudakov31, E. Cisbani32, D. S. Dale33, C. W. deJager34, R. De Leo35, A. Deur36, N. d'Hose37, G. E. Dodge38, J. J. Domingo39, L. Elouadrhiri40, M. B. Epstein41, L. A. Ewell42, J. M. Finn43, K. G. Fissum44, G. Fournier45, B. Frois46, S. Frullani47, C. Furget48, H. Gao49, J. Gao50, F. Garibaldi51, A. Gasparian52, S. Gilad53, R. Gilman54, A. Glamazdin55, C. Glashausser56, J. Gomez57, V. Gorbenko58, P. Grenier59, P. A. M. Guichon60, J. O. Hansen61, R. Holmes62, M. Holtrop63, C. Howell64, G. M. Huber65, C. E. Hyde66, S. Incerti67, M. Iodice68, J. Jardillier69, M. K. Jones70, W. Kahl71, S. Kato72, A. T. Katramatou73, J. J. Kelly74, S. Kerhoas75, A. Ketikyan76, M. Khayat77, K. Kino78, S. Kox79, L. H. Kramer80, K. S. Kumar81, G. Kumbartzki82, M. Kuss83, A. Leone84, J. J. LeRose85, M. Liang86, R. A. Lindgren87, N. Liyanage88, G. J. Lolos89, R. W. Lourie90, R. Madey91, K. Maeda92, S. Malov93, D. M. Manley94, C. Marchand95, D. Marchand96, D. J. Margaziotis97, P. Markowitz98, J. Marroncle99, J. Martino100, K. McCormick101, J. McIntyre102, S. Mehrabyan103, F. Merchez104, Z. E. Meziani105, R. Michaels106, G. W. Miller107, J. Y. Mougey108, S. K. Nanda109, D. Neyret110, E. A. J. M. Offermann111, Z. Papandreou112, B. Pasquini113, C. F. Perdrisat114, R. Perrino115, G. G. Petratos116, S. Platchkov117, R. Pomatsalyuk118, D. L. Prout119, V. A. Punjabi120, T. Pussieux121, G. Quemener122, R. D. Ransome123, O. Ravel124, J. S. Real125, F. Renard126, Y. Roblin127, D. Rowntree128, G. Rutledge129, P. M. Rutt130, A. Saha131, T. Saito132, A. J. Sarty133, A. Serdarevic134, T. Smith135, G. Smirnov136, K. Soldi137, P. Sorokin138, P. A. Souder139, R. Suleiman140, J. A. Templon141, T. Terasawa142, R. Tieulent143, E. Tomasi-Gustaffson144, H. Tsubota145, H. Ueno146, P. E. Ulmer147, G. M. Urciuoli148, M. Vanderhaeghen149, R. L. J. Van der Meer150, R. Van De Vyver151, P. Vernin152, B. Vlahovic153, H. Voskanyan154, E. Voutier155, J. W. Watson156, L. B. Weinstein157, K. Wijesooriya158, R. Wilson159, B. B. Wojtsekhowski160, D. G. Zainea161, W. -M. Zhang162, J. Zhao163, Z. -L. Zhou164
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration, 99The Jefferson Lab Hall A Collaboration, 100The Jefferson Lab Hall A Collaboration, 101The Jefferson Lab Hall A Collaboration, 102The Jefferson Lab Hall A Collaboration, 103The Jefferson Lab Hall A Collaboration, 104The Jefferson Lab Hall A Collaboration, 105The Jefferson Lab Hall A Collaboration, 106The Jefferson Lab Hall A Collaboration, 107The Jefferson Lab Hall A Collaboration, 108The Jefferson Lab Hall A Collaboration, 109The Jefferson Lab Hall A Collaboration, 110The Jefferson Lab Hall A Collaboration, 111The Jefferson Lab Hall A Collaboration, 112The Jefferson Lab Hall A Collaboration, 113The Jefferson Lab Hall A Collaboration, 114The Jefferson Lab Hall A Collaboration, 115The Jefferson Lab Hall A Collaboration, 116The Jefferson Lab Hall A Collaboration, 117The Jefferson Lab Hall A Collaboration, 118The Jefferson Lab Hall A Collaboration, 119The Jefferson Lab Hall A Collaboration, 120The Jefferson Lab Hall A Collaboration, 121The Jefferson Lab Hall A Collaboration, 122The Jefferson Lab Hall A Collaboration, 123The Jefferson Lab Hall A Collaboration, 124The Jefferson Lab Hall A Collaboration, 125The Jefferson Lab Hall A Collaboration, 126The Jefferson Lab Hall A Collaboration, 127The Jefferson Lab Hall A Collaboration, 128The Jefferson Lab Hall A Collaboration, 129The Jefferson Lab Hall A Collaboration, 130The Jefferson Lab Hall A Collaboration, 131The Jefferson Lab Hall A Collaboration, 132The Jefferson Lab Hall A Collaboration, 133The Jefferson Lab Hall A Collaboration, 134The Jefferson Lab Hall A Collaboration, 135The Jefferson Lab Hall A Collaboration, 136The Jefferson Lab Hall A Collaboration, 137The Jefferson Lab Hall A Collaboration, 138The Jefferson Lab Hall A Collaboration, 139The Jefferson Lab Hall A Collaboration, 140The Jefferson Lab Hall A Collaboration, 141The Jefferson Lab Hall A Collaboration, 142The Jefferson Lab Hall A Collaboration, 143The Jefferson Lab Hall A Collaboration, 144The Jefferson Lab Hall A Collaboration, 145The Jefferson Lab Hall A Collaboration, 146The Jefferson Lab Hall A Collaboration, 147The Jefferson Lab Hall A Collaboration, 148The Jefferson Lab Hall A Collaboration, 149The Jefferson Lab Hall A Collaboration, 150The Jefferson Lab Hall A Collaboration, 151The Jefferson Lab Hall A Collaboration, 152The Jefferson Lab Hall A Collaboration, 153The Jefferson Lab Hall A Collaboration, 154The Jefferson Lab Hall A Collaboration, 155The Jefferson Lab Hall A Collaboration, 156The Jefferson Lab Hall A Collaboration, 157The Jefferson Lab Hall A Collaboration, 158The Jefferson Lab Hall A Collaboration, 159The Jefferson Lab Hall A Collaboration, 160The Jefferson Lab Hall A Collaboration, 161The Jefferson Lab Hall A Collaboration, 162The Jefferson Lab Hall A Collaboration, 163The Jefferson Lab Hall A Collaboration, 164The Jefferson Lab Hall A Collaboration

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1. Read More

Public-key cryptosystems for quantum messages are considered from two aspects: public-key encryption and public-key authentication. Firstly, we propose a general construction of quantum public-key encryption scheme, and then construct an information-theoretic secure instance. Then, we propose a quantum public-key authentication scheme, which can protect the integrity of quantum messages. Read More

We define a subclass of quantum Turing machine (QTM) named SR-QTM, which halts deterministically and has deterministic tape head position. A quantum state transition diagram (QSTD) is proposed to describe SR-QTM. With the help of QSTD, we construct a SR-QTM which is universal for all near-trivial transformations. Read More

For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the evolution equation for entanglement given by Konrad et al. [Nat. Read More

A theoretical framework of quantum no-key (QNK) protocol has been presented. As its applications, we develop three kinds of QNK protocols: the practical QNK protocols, the QNK protocol based on quantum perfect encryption, and the QNK protocols based on Boolean function computing. The security of these protocols is based on the laws of quantum mechanics, other than computational hypothesis. Read More

2011Jun
Authors: D. Schlegel, F. Abdalla, T. Abraham, C. Ahn, C. Allende Prieto, J. Annis, E. Aubourg, M. Azzaro, S. Bailey. C. Baltay, C. Baugh, C. Bebek, S. Becerril, M. Blanton, A. Bolton, B. Bromley, R. Cahn, P. -H. Carton, J. L. Cervantes-Cota, Y. Chu, M. Cortes, K. Dawson, A. Dey, M. Dickinson, H. T. Diehl, P. Doel, A. Ealet, J. Edelstein, D. Eppelle, S. Escoffier, A. Evrard, L. Faccioli, C. Frenk, M. Geha, D. Gerdes, P. Gondolo, A. Gonzalez-Arroyo, B. Grossan, T. Heckman, H. Heetderks, S. Ho, K. Honscheid, D. Huterer, O. Ilbert, I. Ivans, P. Jelinsky, Y. Jing, D. Joyce, R. Kennedy, S. Kent, D. Kieda, A. Kim, C. Kim, J. -P. Kneib, X. Kong, A. Kosowsky, K. Krishnan, O. Lahav, M. Lampton, S. LeBohec, V. Le Brun, M. Levi, C. Li, M. Liang, H. Lim, W. Lin, E. Linder, W. Lorenzon, A. de la Macorra, Ch. Magneville, R. Malina, C. Marinoni, V. Martinez, S. Majewski, T. Matheson, R. McCloskey, P. McDonald, T. McKay, J. McMahon, B. Menard, J. Miralda-Escude, M. Modjaz, A. Montero-Dorta, I. Morales, N. Mostek, J. Newman, R. Nichol, P. Nugent, K. Olsen, N. Padmanabhan, N. Palanque-Delabrouille, I. Park, J. Peacock, W. Percival, S. Perlmutter, C. Peroux, P. Petitjean, F. Prada, E. Prieto, J. Prochaska, K. Reil, C. Rockosi, N. Roe, E. Rollinde, A. Roodman, N. Ross, G. Rudnick, V. Ruhlmann-Kleider, J. Sanchez, D. Sawyer, C. Schimd, M. Schubnell, R. Scoccimaro, U. Seljak, H. Seo, E. Sheldon, M. Sholl, R. Shulte-Ladbeck, A. Slosar, D. S. Smith, G. Smoot, W. Springer, A. Stril, A. S. Szalay, C. Tao, G. Tarle, E. Taylor, A. Tilquin, J. Tinker, F. Valdes, J. Wang, T. Wang, B. A. Weaver, D. Weinberg, M. White, M. Wood-Vasey, J. Yang, X. Yang. Ch. Yeche, N. Zakamska, A. Zentner, C. Zhai, P. Zhang

BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = 3000-4800. Read More

Any unitary transformation can be decomposed into a product of a group of near-trivial transformations. We investigate in details the construction of universal quantum circuit of near trivial transformations. We first construct two universal quantum circuits which can implement any single-qubit rotation $R_y(\theta)$ and $R_z(\theta)$ within any given precision, and then we construct universal quantum circuit implementing any single-qubit transformation within any given precision. Read More

We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. Read More

A concept named induced trapdoor one-way quantum transformation (OWQT) has been introduced, and a theoretical framework of public-key encryption (PKE) of quantum message is presented based on it. Then several kinds of quantum public-key encryption (QPKE) protocols, such as quantum version PKE of RSA, ElGamal, Goldwasser-Micali, elliptic curve, McEliece, Niederreiter and Okamoto-Tanaka-Uchiyama, are given within this framework. Though all of these protocols are only computationally secure, the last three are probably secure in post-quantum era. Read More

We studied the high driving force regime of the current-voltage transport response in the mixed state of amorphous molybdenum-germanium superconducting films to the point where the flux flow becomes unstable. The observed nonlinear response conforms with the classic Larkin-Ovchinikov (LO) picture with a quasiparticle-energy-relaxation rate dominated by the quasiparticle recombination process. The measured energy relaxation rate was found to have a magnitude and temperature dependence in agreement with theory. Read More

Error-correction process has to be carried out periodically to prevent accumulation of errors in fault-tolerant quantum computation. It is believed that the best choice to get maximum threshold value is carrying out an error-correction process after each quantum gate operation. Result of this note shows that the optimal error-correction period depends on the value of k which is the level number of concatenated quantum error-correction code. Read More

Vortex dynamics in molybdenum-germanium superconducting films were found to well approximate the unpinned free limit even at low driving forces. This provided an opportunity to empirically establish the intrinsic character of free flux flow and to test in detail the validity of theories for this regime beyond the Bardeen-Stephen approximation. Our observations are in good agreement with the mean-field result of time dependent Ginzburg-Landau theory. Read More

Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep with in the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ~1 bar. Read More

We reconstructed the 3D Fourier intensity distribution of mono-disperse prolate nano-particles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules. Read More

The thermodynamics of the quantum Heisenberg antiferromagnet on a square lattice is revisited through a linearized spin-wave theory which is well defined at any finite temperature. We re-examine in details the temperature dependence of the free energy, the internal energy, the entropy and the specific heat. Most conclusions of the thermodynamics in previous studies can be reproduced in our linearized spin-wave theory. Read More

A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artificial phase transition has been removed. To the zeroth order, the main features of the uniform static susceptibility are produced: a linear temperature dependence at low temperatures and a smooth crossover in the intermediate range and the Curie law at high temperatures. When the leading corrections from the spin-wave interactions are included, the resulting spin susceptibility in the full temperature range is in agreement with the numerical quantum Monte Carlo simulations and high-temperature series expansions. Read More

2009Dec
Authors: LSST Science Collaboration, Paul A. Abell1, Julius Allison2, Scott F. Anderson3, John R. Andrew4, J. Roger P. Angel5, Lee Armus6, David Arnett7, S. J. Asztalos8, Tim S. Axelrod9, Stephen Bailey10, D. R. Ballantyne11, Justin R. Bankert12, Wayne A. Barkhouse13, Jeffrey D. Barr14, L. Felipe Barrientos15, Aaron J. Barth16, James G. Bartlett17, Andrew C. Becker18, Jacek Becla19, Timothy C. Beers20, Joseph P. Bernstein21, Rahul Biswas22, Michael R. Blanton23, Joshua S. Bloom24, John J. Bochanski25, Pat Boeshaar26, Kirk D. Borne27, Marusa Bradac28, W. N. Brandt29, Carrie R. Bridge30, Michael E. Brown31, Robert J. Brunner32, James S. Bullock33, Adam J. Burgasser34, James H. Burge35, David L. Burke36, Phillip A. Cargile37, Srinivasan Chandrasekharan38, George Chartas39, Steven R. Chesley40, You-Hua Chu41, David Cinabro42, Mark W. Claire43, Charles F. Claver44, Douglas Clowe45, A. J. Connolly46, Kem H. Cook47, Jeff Cooke48, Asantha Cooray49, Kevin R. Covey50, Christopher S. Culliton51, Roelof de Jong52, Willem H. de Vries53, Victor P. Debattista54, Francisco Delgado55, Ian P. Dell'Antonio56, Saurav Dhital57, Rosanne Di Stefano58, Mark Dickinson59, Benjamin Dilday60, S. G. Djorgovski61, Gregory Dobler62, Ciro Donalek63, Gregory Dubois-Felsmann64, Josef Durech65, Ardis Eliasdottir66, Michael Eracleous67, Laurent Eyer68, Emilio E. Falco69, Xiaohui Fan70, Christopher D. Fassnacht71, Harry C. Ferguson72, Yanga R. Fernandez73, Brian D. Fields74, Douglas Finkbeiner75, Eduardo E. Figueroa76, Derek B. Fox77, Harold Francke78, James S. Frank79, Josh Frieman80, Sebastien Fromenteau81, Muhammad Furqan82, Gaspar Galaz83, A. Gal-Yam84, Peter Garnavich85, Eric Gawiser86, John Geary87, Perry Gee88, Robert R. Gibson89, Kirk Gilmore90, Emily A. Grace91, Richard F. Green92, William J. Gressler93, Carl J. Grillmair94, Salman Habib95, J. S. Haggerty96, Mario Hamuy97, Alan W. Harris98, Suzanne L. Hawley99, Alan F. Heavens100, Leslie Hebb101, Todd J. Henry102, Edward Hileman103, Eric J. Hilton104, Keri Hoadley105, J. B. Holberg106, Matt J. Holman107, Steve B. Howell108, Leopoldo Infante109, Zeljko Ivezic110, Suzanne H. Jacoby111, Bhuvnesh Jain112, R113, Jedicke114, M. James Jee115, J. Garrett Jernigan116, Saurabh W. Jha117, Kathryn V. Johnston118, R. Lynne Jones119, Mario Juric120, Mikko Kaasalainen121, Styliani122, Kafka, Steven M. Kahn, Nathan A. Kaib, Jason Kalirai, Jeff Kantor, Mansi M. Kasliwal, Charles R. Keeton, Richard Kessler, Zoran Knezevic, Adam Kowalski, Victor L. Krabbendam, K. Simon Krughoff, Shrinivas Kulkarni, Stephen Kuhlman, Mark Lacy, Sebastien Lepine, Ming Liang, Amy Lien, Paulina Lira, Knox S. Long, Suzanne Lorenz, Jennifer M. Lotz, R. H. Lupton, Julie Lutz, Lucas M. Macri, Ashish A. Mahabal, Rachel Mandelbaum, Phil Marshall, Morgan May, Peregrine M. McGehee, Brian T. Meadows, Alan Meert, Andrea Milani, Christopher J. Miller, Michelle Miller, David Mills, Dante Minniti, David Monet, Anjum S. Mukadam, Ehud Nakar, Douglas R. Neill, Jeffrey A. Newman, Sergei Nikolaev, Martin Nordby, Paul O'Connor, Masamune Oguri, John Oliver, Scot S. Olivier, Julia K. Olsen, Knut Olsen, Edward W. Olszewski, Hakeem Oluseyi, Nelson D. Padilla, Alex Parker, Joshua Pepper, John R. Peterson, Catherine Petry, Philip A. Pinto, James L. Pizagno, Bogdan Popescu, Andrej Prsa, Veljko Radcka, M. Jordan Raddick, Andrew Rasmussen, Arne Rau, Jeonghee Rho, James E. Rhoads, Gordon T. Richards, Stephen T. Ridgway, Brant E. Robertson, Rok Roskar, Abhijit Saha, Ata Sarajedini, Evan Scannapieco, Terry Schalk, Rafe Schindler, Samuel Schmidt, Sarah Schmidt, Donald P. Schneider, German Schumacher, Ryan Scranton, Jacques Sebag, Lynn G. Seppala, Ohad Shemmer, Joshua D. Simon, M. Sivertz, Howard A. Smith, J. Allyn Smith, Nathan Smith, Anna H. Spitz, Adam Stanford, Keivan G. Stassun, Jay Strader, Michael A. Strauss, Christopher W. Stubbs, Donald W. Sweeney, Alex Szalay, Paula Szkody, Masahiro Takada, Paul Thorman, David E. Trilling, Virginia Trimble, Anthony Tyson, Richard Van Berg, Daniel Vanden Berk, Jake VanderPlas, Licia Verde, Bojan Vrsnak, Lucianne M. Walkowicz, Benjamin D. Wandelt, Sheng Wang, Yun Wang, Michael Warner, Risa H. Wechsler, Andrew A. West, Oliver Wiecha, Benjamin F. Williams, Beth Willman, David Wittman, Sidney C. Wolff, W. Michael Wood-Vasey, Przemek Wozniak, Patrick Young, Andrew Zentner, Hu Zhan
Affiliations: 1Stella, 2Stella, 3Stella, 4Stella, 5Stella, 6Stella, 7Stella, 8Stella, 9Stella, 10Stella, 11Stella, 12Stella, 13Stella, 14Stella, 15Stella, 16Stella, 17Stella, 18Stella, 19Stella, 20Stella, 21Stella, 22Stella, 23Stella, 24Stella, 25Stella, 26Stella, 27Stella, 28Stella, 29Stella, 30Stella, 31Stella, 32Stella, 33Stella, 34Stella, 35Stella, 36Stella, 37Stella, 38Stella, 39Stella, 40Stella, 41Stella, 42Stella, 43Stella, 44Stella, 45Stella, 46Stella, 47Stella, 48Stella, 49Stella, 50Stella, 51Stella, 52Stella, 53Stella, 54Stella, 55Stella, 56Stella, 57Stella, 58Stella, 59Stella, 60Stella, 61Stella, 62Stella, 63Stella, 64Stella, 65Stella, 66Stella, 67Stella, 68Stella, 69Stella, 70Stella, 71Stella, 72Stella, 73Stella, 74Stella, 75Stella, 76Stella, 77Stella, 78Stella, 79Stella, 80Stella, 81Stella, 82Stella, 83Stella, 84Stella, 85Stella, 86Stella, 87Stella, 88Stella, 89Stella, 90Stella, 91Stella, 92Stella, 93Stella, 94Stella, 95Stella, 96Stella, 97Stella, 98Stella, 99Stella, 100Stella, 101Stella, 102Stella, 103Stella, 104Stella, 105Stella, 106Stella, 107Stella, 108Stella, 109Stella, 110Stella, 111Stella, 112Stella, 113Stella, 114Stella, 115Stella, 116Stella, 117Stella, 118Stella, 119Stella, 120Stella, 121Stella, 122Stella

A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9. Read More

2009Apr
Affiliations: 1Lawrence Berkeley National Lab, 2Lawrence Berkeley National Lab, 3Lawrence Berkeley National Lab, 4Lawrence Berkeley National Lab, 5Lawrence Berkeley National Lab, 6Lawrence Berkeley National Lab, 7Lawrence Berkeley National Lab, 8Lawrence Berkeley National Lab, 9Lawrence Berkeley National Lab, 10Lawrence Berkeley National Lab, 11Lawrence Berkeley National Lab, 12Lawrence Berkeley National Lab, 13Lawrence Berkeley National Lab, 14National Optical Astronomy Observatory, 15National Optical Astronomy Observatory, 16National Optical Astronomy Observatory, 17National Optical Astronomy Observatory, 18National Optical Astronomy Observatory, 19National Optical Astronomy Observatory, 20National Optical Astronomy Observatory, 21National Optical Astronomy Observatory

The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0. Read More

Cross sections for the reaction ${^1}$H($e,e'\pi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2. Read More

2008May
Authors: Z. Ivezic, J. A. Tyson, B. Abel, E. Acosta, R. Allsman, Y. AlSayyad, S. F. Anderson, J. Andrew, R. Angel, G. Angeli, R. Ansari, P. Antilogus, K. T. Arndt, P. Astier, E. Aubourg, T. Axelrod, D. J. Bard, J. D. Barr, A. Barrau, J. G. Bartlett, B. J. Bauman, S. Beaumont, A. C. Becker, J. Becla, C. Beldica, S. Bellavia, G. Blanc, R. D. Blandford, J. S. Bloom, J. Bogart, K. Borne, J. F. Bosch, D. Boutigny, W. N. Brandt, M. E. Brown, J. S. Bullock, P. Burchat, D. L. Burke, G. Cagnoli, D. Calabrese, S. Chandrasekharan, S. Chesley, E. C. Cheu, J. Chiang, C. F. Claver, A. J. Connolly, K. H. Cook, A. Cooray, K. R. Covey, C. Cribbs, W. Cui, R. Cutri, G. Daubard, G. Daues, F. Delgado, S. Digel, P. Doherty, R. Dubois, G. P. Dubois-Felsmann, J. Durech, M. Eracleous, H. Ferguson, J. Frank, M. Freemon, E. Gangler, E. Gawiser, J. C. Geary, P. Gee, M. Geha, R. R. Gibson, D. K. Gilmore, T. Glanzman, I. Goodenow, W. J. Gressler, P. Gris, A. Guyonnet, P. A. Hascall, J. Haupt, F. Hernandez, C. Hogan, D. Huang, M. E. Huffer, W. R. Innes, S. H. Jacoby, B. Jain, J. Jee, J. G. Jernigan, D. Jevremovic, K. Johns, R. L. Jones, C. Juramy-Gilles, M. Juric, S. M. Kahn, J. S. Kalirai, N. Kallivayalil, B. Kalmbach, J. P. Kantor, M. M. Kasliwal, R. Kessler, D. Kirkby, L. Knox, I. Kotov, V. L. Krabbendam, S. Krughoff, P. Kubanek, J. Kuczewski, S. Kulkarni, R. Lambert, L. Le Guillou, D. Levine, M. Liang, K-T. Lim, C. Lintott, R. H. Lupton, A. Mahabal, P. Marshall, S. Marshall, M. May, R. McKercher, M. Migliore, M. Miller, D. J. Mills, D. G. Monet, M. Moniez, D. R. Neill, J-Y. Nief, A. Nomerotski, M. Nordby, P. O'Connor, J. Oliver, S. S. Olivier, K. Olsen, S. Ortiz, R. E. Owen, R. Pain, J. R. Peterson, C. E. Petry, F. Pierfederici, S. Pietrowicz, R. Pike, P. A. Pinto, R. Plante, S. Plate, P. A. Price, M. Prouza, V. Radeka, J. Rajagopal, A. Rasmussen, N. Regnault, S. T. Ridgway, S. Ritz, W. Rosing, C. Roucelle, M. R. Rumore, S. Russo, A. Saha, B. Sassolas, T. L. Schalk, R. H. Schindler, D. P. Schneider, G. Schumacher, J. Sebag, G. H. Sembroski, L. G. Seppala, I. Shipsey, N. Silvestri, J. A. Smith, R. C. Smith, M. A. Strauss, C. W. Stubbs, D. Sweeney, A. Szalay, P. Takacs, J. J. Thaler, R. Van Berg, D. Vanden Berk, K. Vetter, F. Virieux, B. Xin, L. Walkowicz, C. W. Walter, D. L. Wang, M. Warner, B. Willman, D. Wittman, S. C. Wolff, W. M. Wood-Vasey, P. Yoachim, H. Zhan, for the LSST Collaboration
Category: Astrophysics

(Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. Read More