# M. Kohl - HKS - JLab E05-115 and E01-001 - Collaborations

## Contact Details

NameM. Kohl |
||

AffiliationHKS - JLab E05-115 and E01-001 - Collaborations |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesNuclear Experiment (12) Quantum Physics (12) Physics - Atomic Physics (12) High Energy Physics - Experiment (8) Physics - Instrumentation and Detectors (4) High Energy Physics - Phenomenology (4) Nuclear Theory (4) Physics - Soft Condensed Matter (2) Physics - Mesoscopic Systems and Quantum Hall Effect (2) Physics - Optics (2) Physics - Data Analysis; Statistics and Probability (1) Physics - Computational Physics (1) Physics - Superconductivity (1) Physics - Atomic and Molecular Clusters (1) Statistics - Computation (1) Physics - Strongly Correlated Electrons (1) Mathematics - Statistics (1) Physics - Statistical Mechanics (1) Physics - Other (1) Statistics - Theory (1) Physics - Materials Science (1) High Energy Physics - Lattice (1) Cosmology and Nongalactic Astrophysics (1) |

## Publications Authored By M. Kohl

We measure pressure and entropy of ultracold fermionic atoms in an optical lattice for a range of interaction strengths, temperatures and fillings. Our measurements demonstrate that, for low enough temperatures, entropy-rich regions form locally in the metallic phase which are in contact with a Mott-insulating phase featuring lower entropy. In addition, we also measure the reduced density matrix of a single lattice site, and from the comparison between the local and thermodynamic entropies we determine the mutual information between a single lattice site and the rest of the system. Read More

**Authors:**B. S. Henderson, L. D. Ice, D. Khaneft, C. O'Connor, R. Russell, A. Schmidt, J. C. Bernauer, M. Kohl, N. Akopov, R. Alarcon, O. Ates, A. Avetisyan, R. Beck, S. Belostotski, J. Bessuille, F. Brinker, J. R. Calarco, V. Carassiti, E. Cisbani, G. Ciullo, M. Contalbrigo, R. De Leo, J. Diefenbach, T. W. Donnelly, K. Dow, G. Elbakian, P. D. Eversheim, S. Frullani, Ch. Funke, G. Gavrilov, B. Gläser, N. Görrissen, D. K. Hasell, J. Hauschildt, Ph. Hoffmeister, Y. Holler, E. Ihloff, A. Izotov, R. Kaiser, G. Karyan, J. Kelsey, A. Kiselev, P. Klassen, A. Krivshich, I. Lehmann, P. Lenisa, D. Lenz, S. Lumsden, Y. Ma, F. Maas, H. Marukyan, O. Miklukho, R. G. Milner, A. Movsisyan, M. Murray, Y. Naryshkin, R. Perez Benito, R. Perrino, R. P. Redwine, D. Rodríguez Piñeiro, G. Rosner, U. Schneekloth, B. Seitz, M. Statera, A. Thiel, H. Vardanyan, D. Veretennikov, C. Vidal, A. Winnebeck, V. Yeganov

**Category:**Nuclear Experiment

The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, $R_{2\gamma}$, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. Read More

The slow dynamics in a glassy hard-sphere system is dominated by cage breaking events, i.e., rearrangements where a particle escapes from the cage formed by its neighboring particles. Read More

We study the behavior of a single laser-driven trapped ion inside a microscopic optical Fabry-Perot cavity. In particular, we demonstrate a fiber Fabry-Perot cavity operating on the principal $S_{1/2}\to P_{1/2}$ electric dipole transition of an Yb$^+$ ion at $369\,$nm with an atom-ion coupling strength of $g=2\pi\times 67(1)\,$MHz. We employ the cavity to study the generation of single photons and observe cavity-induced back-action in the Purcell-enhanced emission of photons. Read More

**Authors:**O. Mineev, S. Bianchin, M. D. Hasinoff, K. Horie, Y. Igarashi, J. Imazato, H. Ito, H. Kawai, S. Kodama, M. Kohl, Yu. Kudenko, S. Shimizu, M. Tabata, A. Toyoda, N. Yershov

A spiral fiber tracker (SFT) has been designed and produced for the J-PARC E36 experiment as an element of the tracking system for conducting a high-resolution momentum measurement of charge particles from kaon decays. A novel technique to wind the pre-made fiber ribbons spirally was employed for the configuration with four detector layers made of 1 mm diameter plastic scintillating fibers. Good position alignment and sufficiently high detection efficiency for charged particles with minimum ionizing energy were confirmed in cosmic ray test. Read More

Near zero temperature, quantum magnetism can non-trivially arise from short-range interactions, but the occurrence of magnetic order depends crucially on the interplay of interactions, lattice geometry, dimensionality and doping. Even though the consequences of this interplay are not yet fully understood, quantum magnetism is believed to be connected to a range of complex phenomena in the solid state, for example, in the context of high-$T_c$ superconductivity and spin liquids in frustrated lattices. Ultracold atomic Fermi gases in optical lattices constitute an experimental system with unrivalled tunability and detection capabilities to explore quantum magnetism by analog quantum simulation. Read More

**Authors:**T. Gogami

^{1}, C. Chen

^{2}, D. Kawama

^{3}, P. Achenbach

^{4}, A. Ahmidouch

^{5}, I. Albayrak

^{6}, D. Androic

^{7}, A. Asaturyan

^{8}, R. Asaturyan

^{9}, O. Ates

^{10}, P. Baturin

^{11}, R. Badui

^{12}, W. Boeglin

^{13}, J. Bono

^{14}, E. Brash

^{15}, P. Carter

^{16}, A. Chiba

^{17}, E. Christy

^{18}, S. Danagoulian

^{19}, R. De Leo

^{20}, D. Doi

^{21}, M. Elaasar

^{22}, R. Ent

^{23}, Y. Fujii

^{24}, M. Fujita

^{25}, M. Furic

^{26}, M. Gabrielyan

^{27}, L. Gan

^{28}, F. Garibaldi

^{29}, D. Gaskell

^{30}, A. Gasparian

^{31}, Y. Han

^{32}, O. Hashimoto

^{33}, T. Horn

^{34}, B. Hu

^{35}, Ed. V. Hungerford

^{36}, M. Jones

^{37}, H. Kanda

^{38}, M. Kaneta

^{39}, S. Kato

^{40}, M. Kawai

^{41}, H. Khanal

^{42}, M. Kohl

^{43}, A. Liyanage

^{44}, W. Luo

^{45}, K. Maeda

^{46}, A. Margaryan

^{47}, P. Markowitz

^{48}, T. Maruta

^{49}, A. Matsumura

^{50}, V. Maxwell

^{51}, A. Mkrtchyan

^{52}, H. Mkrtchyan

^{53}, S. Nagao

^{54}, S. N. Nakamura

^{55}, A. Narayan

^{56}, C. Neville

^{57}, G. Niculescu

^{58}, M. I. Niculescu

^{59}, A. Nunez

^{60}, Nuruzzaman

^{61}, Y. Okayasu

^{62}, T. Petkovic

^{63}, J. Pochodzalla

^{64}, X. Qiu

^{65}, J. Reinhold

^{66}, V. M. Rodriguez

^{67}, C. Samanta

^{68}, B. Sawatzky

^{69}, T. Seva

^{70}, A. Shichijo

^{71}, V. Tadevosyan

^{72}, L. Tang

^{73}, N. Taniya

^{74}, K. Tsukada

^{75}, M. Veilleux

^{76}, W. Vulcan

^{77}, F. R. Wesselmann

^{78}, S. A. Wood

^{79}, T. Yamamoto

^{80}, L. Ya

^{81}, Z. Ye

^{82}, K. Yokota

^{83}, L. Yuan

^{84}, S. Zhamkochyan

^{85}, L. Zhu

^{86}

**Affiliations:**

^{1}HKS,

^{2}HKS,

^{3}HKS,

^{4}HKS,

^{5}HKS,

^{6}HKS,

^{7}HKS,

^{8}HKS,

^{9}HKS,

^{10}HKS,

^{11}HKS,

^{12}HKS,

^{13}HKS,

^{14}HKS,

^{15}HKS,

^{16}HKS,

^{17}HKS,

^{18}HKS,

^{19}HKS,

^{20}HKS,

^{21}HKS,

^{22}HKS,

^{23}HKS,

^{24}HKS,

^{25}HKS,

^{26}HKS,

^{27}HKS,

^{28}HKS,

^{29}HKS,

^{30}HKS,

^{31}HKS,

^{32}HKS,

^{33}HKS,

^{34}HKS,

^{35}HKS,

^{36}HKS,

^{37}HKS,

^{38}HKS,

^{39}HKS,

^{40}HKS,

^{41}HKS,

^{42}HKS,

^{43}HKS,

^{44}HKS,

^{45}HKS,

^{46}HKS,

^{47}HKS,

^{48}HKS,

^{49}HKS,

^{50}HKS,

^{51}HKS,

^{52}HKS,

^{53}HKS,

^{54}HKS,

^{55}HKS,

^{56}HKS,

^{57}HKS,

^{58}HKS,

^{59}HKS,

^{60}HKS,

^{61}HKS,

^{62}HKS,

^{63}HKS,

^{64}HKS,

^{65}HKS,

^{66}HKS,

^{67}HKS,

^{68}HKS,

^{69}HKS,

^{70}HKS,

^{71}HKS,

^{72}HKS,

^{73}HKS,

^{74}HKS,

^{75}HKS,

^{76}HKS,

^{77}HKS,

^{78}HKS,

^{79}HKS,

^{80}HKS,

^{81}HKS,

^{82}HKS,

^{83}HKS,

^{84}HKS,

^{85}HKS,

^{86}HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

We experimentally demonstrate coupling of an atomically thin, free-standing graphene membrane to an optical cavity. By changing the position of the membrane along the standing-wave field of the cavity we tailor the dissipative coupling between the membrane and the cavity, and we show that the dissipative coupling can outweigh the dispersive coupling. Such a system, for which controlled dissipation prevails dispersion, will prove useful for novel laser-cooling schemes in optomechanics. Read More

The crossover between a metal and a Mott insulator leads to a localization of fermions from delocalized Bloch states to localized states. We experimentally study this crossover using fermionic atoms in an optical lattice by measuring thermodynamic and local (on--site) density correlations. In the metallic phase at incommensurable filling we observe the violation of the local fluctuation--dissipation theorem indicating that the thermodynamics cannot be explained by local observables. Read More

**Authors:**M. Albrow, M. Amaryan, E. Chudakov, P. Degtyarenko, A. Feijoo, C. Fernandez-Ramirez, I. P. Fernando, A. Filippi, J. L. Goity, H. Haberzettl, B. C. Jackson, H. Kamano, C. Keith, M. Kohl, I. Larin, Wei-Hong Liang, V. K. Magas, M. Mai, D. M. Manley, V. Mathieu, F. Myhrer, K. Nakayama, H. Noumi, Y. Oh, H. Ohnishi, E. Oset, M. Pennington, A. Ramos, D. Richards, E. Santopinto, R. Schumacher, A. Szczepaniak, S. Taylor, B. Wojtsekhowski, Ju-Jun Xie, V. Ziegler, B. Zou

The KL2016 Workshop is following the Letter of Intent LoI12-15-001 "Physics Opportunities with Secondary KL beam at JLab" submitted to PAC43 with the main focus on the physics of excited hyperons produced by the Kaon beam on unpolarized and polarized targets with GlueX setup in Hall D. Such studies will broaden a physics program of hadron spectroscopy extending it to the strange sector. The Workshop was organized to get a feedback from the community to strengthen physics motivation of the LoI and prepare a full proposal. Read More

Understanding the phases of strongly correlated quantum matter is challenging because they arise from the subtle interplay between kinetic energy, interactions, and dimensionality. In this quest it has turned out that even conceptually simple models of strongly correlated fermions, which often only approximately represent the physics of the solid state, are very hard to solve. Since the conjecture by P. Read More

**Authors:**T. Gogami, C. Chen, D. Kawama, P. Achenbach, A. Ahmidouch, I. Albayrak, D. Androic, A. Asaturyan, R. Asaturyan, O. Ates, P. Baturin, R. Badui, W. Boeglin, J. Bono, E. Brash, P. Carter, A. Chiba, E. Christy, S. Danagoulian, R. De Leo, D. Doi, M. Elaasar, R. Ent, Y. Fujii, M. Fujita, M. Furic, M. Gabrielyan, L. Gan, F. Garibaldi, D. Gaskell, A. Gasparian, Y. Han, O. Hashimoto, T. Horn, B. Hu, Ed. V. Hungerford, M. Jones, H. Kanda, M. Kaneta, S. Kato, M. Kawai, H. Khanal, M. Kohl, A. Liyanage, W. Luo, K. Maeda, A. Margaryan, P. Markowitz, T. Maruta, A. Matsumura, V. Maxwell, A. Mkrtchyan, H. Mkrtchyan, S. Nagao, S. N. Nakamura, A. Narayan, C. Neville, G. Niculescu, M. I. Niculescu, A. Nunez, Nuruzzaman, Y. Okayasu, T. Petkovic, J. Pochodzalla, X. Qiu, J. Reinhold, V. M. Rodriguez, C. Samanta, B. Sawatzky, T. Seva, A. Shichijo, V. Tadevosyan, L. Tang, N. Taniya, K. Tsukada, M. Veilleux, W. Vulcan, F. R. Wesselmann, S. A. Wood, T. Yamamoto, L. Ya, Z. Ye, K. Yokota, L. Yuan, S. Zhamkochyan, L. Zhu

**Category:**Nuclear Experiment

Spectroscopy of a $^{10}_{\Lambda}$Be hypernucleus was carried out at JLab Hall C using the $(e,e^{\prime}K^{+})$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). Read More

The fundamental measure approach to classical density functional theory has been shown to be a powerful tool to predict various thermodynamic properties of hard-sphere systems. We employ this approach to determine not only one-particle densities but also two-particle correlations in binary and six-component mixtures of hard spheres in the vicinity of a hard wall. The broken isotropy enables us to carefully test a large variety of theoretically predicted two-particle features by quantitatively comparing them to the results of Brownian dynamics simulations. Read More

**Authors:**C. Fanelli, E. Cisbani, D. J. Hamilton, G. Salme, B. Wojtsekhowski, A. Ahmidouch, J. R. M. Annand, H. Baghdasaryan, J. Beaufait, P. Bosted, E. J. Brash, C. Butuceanu, P. Carter, E. Christy, E. Chudakov, S. Danagoulian, D. Day, P. Degtyarenko, R. Ent, H. Fenker, M. Fowler, E. Frlez, D. Gaskell, R. Gilman, T. Horn, G. M. Huber, C. W. de Jager, E. Jensen, M. K. Jones, A. Kelleher, C. Keppel, M. Khandaker, M. Kohl, G. Kumbartzki, S. Lassiter, Y. Li, R. Lindgren, H. Lovelace, W. Luo, D. Mack, V. Mamyan, D. J. Margaziotis, P. Markowitz, J. Maxwell, G. Mbianda, D. Meekins, M. Meziane, J. Miller, A. Mkrtchyan, H. Mkrtchyan, J. Mulholland, V. Nelyubin, L. Pentchev, C. F. Perdrisat, E. Piasetzky, Y. Prok, A. J. R. Puckett, V. Punjabi, M. Shabestari, A. Shahinyan, K. Slifer, G. Smith, P. Solvignon, R. Subedi, F. R. Wesselmann, S. Wood, Z. Ye, X. Zheng

**Category:**Nuclear Experiment

Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7~GeV at a proton scattering angle of \cma$= 70^\circ$. Read More

**Authors:**J. Balewski, J. Bernauer, J. Bessuille, R. Corliss, R. Cowan, C. Epstein, P. Fisher, D. Hasell, E. Ihloff, Y. Kahn, J. Kelsey, R. Milner, S. Steadman, J. Thaler, C. Tschalaer, C. Vidal, S. Benson, J. Boyce, D. Douglas, P. Evtushenko, C. Hernandez-Garcia, C. Keith, C. Tennant, S. Zhang, R. Alarcon, D. Blyth, R. Dipert, L. Ice, G. Randall, B. Dongwi, N. Kalantarians, M. Kohl, A. Liyanage, J. Nazeer, M. Garcon, R. Cervantes, K. Dehmelt, A. Deshpande, N. Feege, B. Surrow

We describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c$^2$ could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. Read More

**Authors:**H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, M. Köhl

Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of an $\textrm{Yb}^+$ ion. We ameliorate the effect of the sixty-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. Read More

We derive conditions for $L_2$ differentiability of generalized linear models with error distributions not necessarily belonging to exponential families, covering both cases of stochastic and deterministic regressors. These conditions induce smoothness and integrability conditions for corresponding GLM-based time series models. Read More

We present a light-matter interface which consists of a single $^{174}$Yb$^+$ ion coupled to an optical fiber-cavity. We observe that photons at 935 nm are mainly emitted into the cavity mode and that correlations between the polarization of the photon and the spin state of the ion are preserved despite the intrinsic coupling into a single-mode fiber. Complementary, when a faint coherent light field is injected into the cavity mode we find enhanced and polarization dependent absorption by the ion. Read More

This paper comprises an experimental and theoretical investigation of the time evolution of a Fermi gas following fast and slow quenches of a one-dimensional optical double-well superlattice potential. We investigate both the local tunneling in the connected double wells and the global dynamics towards a steady state. The local observables in the steady-state resemble those of an equilibrium state, whereas the global properties indicate a strong non-equilibrium situation. Read More

We investigate the retrieval of spatially resolved atomic displacements via the phases of the direct(real)-space image reconstructed from the strained crystal's coherent x-ray diffraction pattern. We demonstrate that limiting the spatial variation of the first and second order spatial displacement derivatives improves convergence of the iterative phase retrieval algorithm for displacements reconstructions to the true solution. Our approach is exploited to retrieve the displacement in a periodic array of silicon lines isolated by silicon dioxide filled trenches. Read More

**Authors:**L. Tang

^{1}, C. Chen

^{2}, T. Gogami

^{3}, D. Kawama

^{4}, Y. Han

^{5}, L. Yuan

^{6}, A. Matsumura

^{7}, Y. Okayasu

^{8}, T. Seva

^{9}, V. M. Rodriguez

^{10}, P. Baturin

^{11}, A. Acha

^{12}, P. Achenbach

^{13}, A. Ahmidouch

^{14}, I. Albayrak

^{15}, D. Androic

^{16}, A. Asaturyan

^{17}, R. Asaturyan

^{18}, O. Ates

^{19}, R. Badui

^{20}, O. K. Baker

^{21}, F. Benmokhtar

^{22}, W. Boeglin

^{23}, J. Bono

^{24}, P. Bosted

^{25}, E. Brash

^{26}, P. Carter

^{27}, R. Carlini

^{28}, A. Chiba

^{29}, M. E. Christy

^{30}, L. Cole

^{31}, M. M. Dalton

^{32}, S. Danagoulian

^{33}, A. Daniel

^{34}, R. De Leo

^{35}, V. Dharmawardane

^{36}, D. Doi

^{37}, K. Egiyan

^{38}, M. Elaasar

^{39}, R. Ent

^{40}, H. Fenker

^{41}, Y. Fujii

^{42}, M. Furic

^{43}, M. Gabrielyan

^{44}, L. Gan

^{45}, F. Garibaldi

^{46}, D. Gaskell

^{47}, A. Gasparian

^{48}, E. F. Gibson

^{49}, P. Gueye

^{50}, O. Hashimoto

^{51}, D. Honda

^{52}, T. Horn

^{53}, B. Hu

^{54}, Ed V. Hungerford

^{55}, C. Jayalath

^{56}, M. Jones

^{57}, K. Johnston

^{58}, N. Kalantarians

^{59}, H. Kanda

^{60}, M. Kaneta

^{61}, F. Kato

^{62}, S. Kato

^{63}, M. Kawai

^{64}, C. Keppel

^{65}, H. Khanal

^{66}, M. Kohl

^{67}, L. Kramer

^{68}, K. J. Lan

^{69}, Y. Li

^{70}, A. Liyanage

^{71}, W. Luo

^{72}, D. Mack

^{73}, K. Maeda

^{74}, S. Malace

^{75}, A. Margaryan

^{76}, G. Marikyan

^{77}, P. Markowitz

^{78}, T. Maruta

^{79}, N. Maruyama

^{80}, V. Maxwell

^{81}, D. J. Millener

^{82}, T. Miyoshi

^{83}, A. Mkrtchyan

^{84}, H. Mkrtchyan

^{85}, T. Motoba

^{86}, S. Nagao

^{87}, S. N. Nakamura

^{88}, A. Narayan

^{89}, C. Neville

^{90}, G. Niculescu

^{91}, M. I. Niculescu

^{92}, A. Nunez

^{93}, Nuruzzaman

^{94}, H. Nomura

^{95}, K. Nonaka

^{96}, A. Ohtani

^{97}, M. Oyamada

^{98}, N. Perez

^{99}, T. Petkovic

^{100}, J. Pochodzalla

^{101}, X. Qiu

^{102}, S. Randeniya

^{103}, B. Raue

^{104}, J. Reinhold

^{105}, R. Rivera

^{106}, J. Roche

^{107}, C. Samanta

^{108}, Y. Sato

^{109}, B. Sawatzky

^{110}, E. K. Segbefia

^{111}, D. Schott

^{112}, A. Shichijo

^{113}, N. Simicevic

^{114}, G. Smith

^{115}, Y. Song

^{116}, M. Sumihama

^{117}, V. Tadevosyan

^{118}, T. Takahashi

^{119}, N. Taniya

^{120}, K. Tsukada

^{121}, V. Tvaskis

^{122}, M. Veilleux

^{123}, W. Vulcan

^{124}, S. Wells

^{125}, F. R. Wesselmann

^{126}, S. A. Wood

^{127}, T. Yamamoto

^{128}, C. Yan

^{129}, Z. Ye

^{130}, K. Yokota

^{131}, S. Zhamkochyan

^{132}, L. Zhu

^{133}

**Affiliations:**

^{1}HKS - JLab E05-115 and E01-001 - Collaborations,

^{2}HKS - JLab E05-115 and E01-001 - Collaborations,

^{3}HKS - JLab E05-115 and E01-001 - Collaborations,

^{4}HKS - JLab E05-115 and E01-001 - Collaborations,

^{5}HKS - JLab E05-115 and E01-001 - Collaborations,

^{6}HKS - JLab E05-115 and E01-001 - Collaborations,

^{7}HKS - JLab E05-115 and E01-001 - Collaborations,

^{8}HKS - JLab E05-115 and E01-001 - Collaborations,

^{9}HKS - JLab E05-115 and E01-001 - Collaborations,

^{10}HKS - JLab E05-115 and E01-001 - Collaborations,

^{11}HKS - JLab E05-115 and E01-001 - Collaborations,

^{12}HKS - JLab E05-115 and E01-001 - Collaborations,

^{13}HKS - JLab E05-115 and E01-001 - Collaborations,

^{14}HKS - JLab E05-115 and E01-001 - Collaborations,

^{15}HKS - JLab E05-115 and E01-001 - Collaborations,

^{16}HKS - JLab E05-115 and E01-001 - Collaborations,

^{17}HKS - JLab E05-115 and E01-001 - Collaborations,

^{18}HKS - JLab E05-115 and E01-001 - Collaborations,

^{19}HKS - JLab E05-115 and E01-001 - Collaborations,

^{20}HKS - JLab E05-115 and E01-001 - Collaborations,

^{21}HKS - JLab E05-115 and E01-001 - Collaborations,

^{22}HKS - JLab E05-115 and E01-001 - Collaborations,

^{23}HKS - JLab E05-115 and E01-001 - Collaborations,

^{24}HKS - JLab E05-115 and E01-001 - Collaborations,

^{25}HKS - JLab E05-115 and E01-001 - Collaborations,

^{26}HKS - JLab E05-115 and E01-001 - Collaborations,

^{27}HKS - JLab E05-115 and E01-001 - Collaborations,

^{28}HKS - JLab E05-115 and E01-001 - Collaborations,

^{29}HKS - JLab E05-115 and E01-001 - Collaborations,

^{30}HKS - JLab E05-115 and E01-001 - Collaborations,

^{31}HKS - JLab E05-115 and E01-001 - Collaborations,

^{32}HKS - JLab E05-115 and E01-001 - Collaborations,

^{33}HKS - JLab E05-115 and E01-001 - Collaborations,

^{34}HKS - JLab E05-115 and E01-001 - Collaborations,

^{35}HKS - JLab E05-115 and E01-001 - Collaborations,

^{36}HKS - JLab E05-115 and E01-001 - Collaborations,

^{37}HKS - JLab E05-115 and E01-001 - Collaborations,

^{38}HKS - JLab E05-115 and E01-001 - Collaborations,

^{39}HKS - JLab E05-115 and E01-001 - Collaborations,

^{40}HKS - JLab E05-115 and E01-001 - Collaborations,

^{41}HKS - JLab E05-115 and E01-001 - Collaborations,

^{42}HKS - JLab E05-115 and E01-001 - Collaborations,

^{43}HKS - JLab E05-115 and E01-001 - Collaborations,

^{44}HKS - JLab E05-115 and E01-001 - Collaborations,

^{45}HKS - JLab E05-115 and E01-001 - Collaborations,

^{46}HKS - JLab E05-115 and E01-001 - Collaborations,

^{47}HKS - JLab E05-115 and E01-001 - Collaborations,

^{48}HKS - JLab E05-115 and E01-001 - Collaborations,

^{49}HKS - JLab E05-115 and E01-001 - Collaborations,

^{50}HKS - JLab E05-115 and E01-001 - Collaborations,

^{51}HKS - JLab E05-115 and E01-001 - Collaborations,

^{52}HKS - JLab E05-115 and E01-001 - Collaborations,

^{53}HKS - JLab E05-115 and E01-001 - Collaborations,

^{54}HKS - JLab E05-115 and E01-001 - Collaborations,

^{55}HKS - JLab E05-115 and E01-001 - Collaborations,

^{56}HKS - JLab E05-115 and E01-001 - Collaborations,

^{57}HKS - JLab E05-115 and E01-001 - Collaborations,

^{58}HKS - JLab E05-115 and E01-001 - Collaborations,

^{59}HKS - JLab E05-115 and E01-001 - Collaborations,

^{60}HKS - JLab E05-115 and E01-001 - Collaborations,

^{61}HKS - JLab E05-115 and E01-001 - Collaborations,

^{62}HKS - JLab E05-115 and E01-001 - Collaborations,

^{63}HKS - JLab E05-115 and E01-001 - Collaborations,

^{64}HKS - JLab E05-115 and E01-001 - Collaborations,

^{65}HKS - JLab E05-115 and E01-001 - Collaborations,

^{66}HKS - JLab E05-115 and E01-001 - Collaborations,

^{67}HKS - JLab E05-115 and E01-001 - Collaborations,

^{68}HKS - JLab E05-115 and E01-001 - Collaborations,

^{69}HKS - JLab E05-115 and E01-001 - Collaborations,

^{70}HKS - JLab E05-115 and E01-001 - Collaborations,

^{71}HKS - JLab E05-115 and E01-001 - Collaborations,

^{72}HKS - JLab E05-115 and E01-001 - Collaborations,

^{73}HKS - JLab E05-115 and E01-001 - Collaborations,

^{74}HKS - JLab E05-115 and E01-001 - Collaborations,

^{75}HKS - JLab E05-115 and E01-001 - Collaborations,

^{76}HKS - JLab E05-115 and E01-001 - Collaborations,

^{77}HKS - JLab E05-115 and E01-001 - Collaborations,

^{78}HKS - JLab E05-115 and E01-001 - Collaborations,

^{79}HKS - JLab E05-115 and E01-001 - Collaborations,

^{80}HKS - JLab E05-115 and E01-001 - Collaborations,

^{81}HKS - JLab E05-115 and E01-001 - Collaborations,

^{82}HKS - JLab E05-115 and E01-001 - Collaborations,

^{83}HKS - JLab E05-115 and E01-001 - Collaborations,

^{84}HKS - JLab E05-115 and E01-001 - Collaborations,

^{85}HKS - JLab E05-115 and E01-001 - Collaborations,

^{86}HKS - JLab E05-115 and E01-001 - Collaborations,

^{87}HKS - JLab E05-115 and E01-001 - Collaborations,

^{88}HKS - JLab E05-115 and E01-001 - Collaborations,

^{89}HKS - JLab E05-115 and E01-001 - Collaborations,

^{90}HKS - JLab E05-115 and E01-001 - Collaborations,

^{91}HKS - JLab E05-115 and E01-001 - Collaborations,

^{92}HKS - JLab E05-115 and E01-001 - Collaborations,

^{93}HKS - JLab E05-115 and E01-001 - Collaborations,

^{94}HKS - JLab E05-115 and E01-001 - Collaborations,

^{95}HKS - JLab E05-115 and E01-001 - Collaborations,

^{96}HKS - JLab E05-115 and E01-001 - Collaborations,

^{97}HKS - JLab E05-115 and E01-001 - Collaborations,

^{98}HKS - JLab E05-115 and E01-001 - Collaborations,

^{99}HKS - JLab E05-115 and E01-001 - Collaborations,

^{100}HKS - JLab E05-115 and E01-001 - Collaborations,

^{101}HKS - JLab E05-115 and E01-001 - Collaborations,

^{102}HKS - JLab E05-115 and E01-001 - Collaborations,

^{103}HKS - JLab E05-115 and E01-001 - Collaborations,

^{104}HKS - JLab E05-115 and E01-001 - Collaborations,

^{105}HKS - JLab E05-115 and E01-001 - Collaborations,

^{106}HKS - JLab E05-115 and E01-001 - Collaborations,

^{107}HKS - JLab E05-115 and E01-001 - Collaborations,

^{108}HKS - JLab E05-115 and E01-001 - Collaborations,

^{109}HKS - JLab E05-115 and E01-001 - Collaborations,

^{110}HKS - JLab E05-115 and E01-001 - Collaborations,

^{111}HKS - JLab E05-115 and E01-001 - Collaborations,

^{112}HKS - JLab E05-115 and E01-001 - Collaborations,

^{113}HKS - JLab E05-115 and E01-001 - Collaborations,

^{114}HKS - JLab E05-115 and E01-001 - Collaborations,

^{115}HKS - JLab E05-115 and E01-001 - Collaborations,

^{116}HKS - JLab E05-115 and E01-001 - Collaborations,

^{117}HKS - JLab E05-115 and E01-001 - Collaborations,

^{118}HKS - JLab E05-115 and E01-001 - Collaborations,

^{119}HKS - JLab E05-115 and E01-001 - Collaborations,

^{120}HKS - JLab E05-115 and E01-001 - Collaborations,

^{121}HKS - JLab E05-115 and E01-001 - Collaborations,

^{122}HKS - JLab E05-115 and E01-001 - Collaborations,

^{123}HKS - JLab E05-115 and E01-001 - Collaborations,

^{124}HKS - JLab E05-115 and E01-001 - Collaborations,

^{125}HKS - JLab E05-115 and E01-001 - Collaborations,

^{126}HKS - JLab E05-115 and E01-001 - Collaborations,

^{127}HKS - JLab E05-115 and E01-001 - Collaborations,

^{128}HKS - JLab E05-115 and E01-001 - Collaborations,

^{129}HKS - JLab E05-115 and E01-001 - Collaborations,

^{130}HKS - JLab E05-115 and E01-001 - Collaborations,

^{131}HKS - JLab E05-115 and E01-001 - Collaborations,

^{132}HKS - JLab E05-115 and E01-001 - Collaborations,

^{133}HKS - JLab E05-115 and E01-001 - Collaborations

**Category:**Nuclear Experiment

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms. Read More

**Authors:**R. Milner, D. K. Hasell, M. Kohl, U. Schneekloth, N. Akopov, R. Alarcon, V. A. Andreev, O. Ates, A. Avetisyan, D. Bayadilov, R. Beck, S. Belostotski, J. C. Bernauer, J. Bessuille, F. Brinker, B. Buck, J. R. Calarco, V. Carassiti, E. Cisbani, G. Ciullo, M. Contalbrigo, N. D'Ascenzo, R. De Leo, J. Diefenbach, T. W. Donnelly, K. Dow, G. Elbakian, D. Eversheim, S. Frullani, Ch. Funke, G. Gavrilov, B. Gläser, N. Görrissen, J. Hauschildt, B. S. Henderson, Ph. Hoffmeister, Y. Holler, L. D. Ice, A. Izotov, R. Kaiser, G. Karyan, J. Kelsey, D. Khaneft, P. Klassen, A. Kiselev, A. Krivshich, I. Lehmann, P. Lenisa, D. Lenz, S. Lumsden, Y. Ma, F. Maas, H. Marukyan, O. Miklukho, A. Movsisyan, M. Murray, Y. Naryshkin, C. O'Connor, R. Perez Benito, R. Perrino, R. P. Redwine, D. Rodríguez Piñeiro, G. Rosner, R. L. Russell, A. Schmidt, B. Seitz, M. Statera, A. Thiel, H. Vardanyan, D. Veretennikov, C. Vidal, A. Winnebeck, V. Yeganov

The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, $\mu_p G^p_E/G^p_M$, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2. Read More

**Authors:**J. N. Butler, Z. Ligeti, J. L. Ritchie, V. Cirigliano, S. Kettell, R. Briere, A. A. Petrov, A. Schwartz, T. Skwarnicki, J. Zupan, N. Christ, S. R. Sharpe, R. S. Van de Water, W. Altmannshofer, N. Arkani-Hamed, M. Artuso, D. M. Asner, C. Bernard, A. J. Bevan, M. Blanke, G. Bonvicini, T. E. Browder, D. A. Bryman, P. Campana, R. Cenci, D. Cline, J. Comfort, D. Cronin-Hennessy, A. Datta, S. Dobbs, M. Duraisamy, A. X. El-Khadra, J. E. Fast, R. Forty, K. T. Flood, T. Gershon, Y. Grossman, B. Hamilton, C. T. Hill, R. J. Hill, D. G. Hitlin, D. E. Jaffe, A. Jawahery, C. P. Jessop, A. L. Kagan, D. M. Kaplan, M. Kohl, P. Krizan, A. S. Kronfeld, K. Lee, L. S. Littenberg, D. B. MacFarlane, P. B. Mackenzie, B. T. Meadows, J. Olsen, M. Papucci, Z. Parsa, G. Paz, G. Perez, L. E. Piilonen, K. Pitts, M. V. Purohit, B. Quinn, B. N. Ratcliff, D. A. Roberts, J. L. Rosner, P. Rubin, J. Seeman, K. K. Seth, B. Schmidt, A. Schopper, M. D. Sokoloff, A. Soni, K. Stenson, S. Stone, R. Sundrum, R. Tschirhart, A. Vainshtein, Y. W. Wah, G. Wilkinson, M. B. Wise, E. Worcester, J. Xu, T. Yamanaka

This report represents the response of the Intensity Frontier Quark Flavor Physics Working Group to the Snowmass charge. We summarize the current status of quark flavor physics and identify many exciting future opportunities for studying the properties of strange, charm, and bottom quarks. The ability of these studies to reveal the effects of new physics at high mass scales make them an essential ingredient in a well-balanced experimental particle physics program. Read More

**Authors:**R. Essig, J. A. Jaros, W. Wester, P. Hansson Adrian, S. Andreas, T. Averett, O. Baker, B. Batell, M. Battaglieri, J. Beacham, T. Beranek, J. D. Bjorken, F. Bossi, J. R. Boyce, G. D. Cates, A. Celentano, A. S. Chou, R. Cowan, F. Curciarello, H. Davoudiasl, P. deNiverville, R. De Vita, A. Denig, R. Dharmapalan, B. Dongwi, B. Döbrich, B. Echenard, D. Espriu, S. Fegan, P. Fisher, G. B. Franklin, A. Gasparian, Y. Gershtein, M. Graham, P. W. Graham, A. Haas, A. Hatzikoutelis, M. Holtrop, I. Irastorza, E. Izaguirre, J. Jaeckel, Y. Kahn, N. Kalantarians, M. Kohl, G. Krnjaic, V. Kubarovsky, H-S. Lee, A. Lindner, A. Lobanov, W. J. Marciano, D. J. E. Marsh, T. Maruyama, D. McKeen, H. Merkel, K. Moffeit, P. Monaghan, G. Mueller, T. K. Nelson, G. R. Neil, M. Oriunno, Z. Pavlovic, S. K. Phillips, M. J. Pivovaroff, R. Poltis, M. Pospelov, S. Rajendran, J. Redondo, A. Ringwald, A. Ritz, J. Ruz, K. Saenboonruang, P. Schuster, M. Shinn, T. R. Slatyer, J. H. Steffen, S. Stepanyan, D. B. Tanner, J. Thaler, M. E. Tobar, N. Toro, A. Upadye, R. Van de Water, B. Vlahovic, J. K. Vogel, D. Walker, A. Weltman, B. Wojtsekhowski, S. Zhang, K. Zioutas

Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. Read More

**Authors:**J. Balewski

^{1}, J. Bernauer

^{2}, W. Bertozzi

^{3}, J. Bessuille

^{4}, B. Buck

^{5}, R. Cowan

^{6}, K. Dow

^{7}, C. Epstein

^{8}, P. Fisher

^{9}, S. Gilad

^{10}, E. Ihloff

^{11}, Y. Kahn

^{12}, A. Kelleher

^{13}, J. Kelsey

^{14}, R. Milner

^{15}, C. Moran

^{16}, L. Ou

^{17}, R. Russell

^{18}, B. Schmookler

^{19}, J. Thaler

^{20}, C. Tschalär

^{21}, C. Vidal

^{22}, A. Winnebeck

^{23}, S. Benson

^{24}, C. Gould

^{25}, G. Biallas

^{26}, J. R. Boyce

^{27}, J. Coleman

^{28}, D. Douglas

^{29}, R. Ent

^{30}, P. Evtushenko

^{31}, H. C. Fenker

^{32}, J. Gubeli

^{33}, F. Hannon

^{34}, J. Huang

^{35}, K. Jordan

^{36}, R. Legg

^{37}, M. Marchlik

^{38}, W. Moore

^{39}, G. Neil

^{40}, M. Shinn

^{41}, C. Tennant

^{42}, R. Walker

^{43}, G. Williams

^{44}, S. Zhang

^{45}, M. Freytsis

^{46}, R. Fiorito

^{47}, P. O'Shea

^{48}, R. Alarcon

^{49}, R. Dipert

^{50}, G. Ovanesyan

^{51}, T. Gunter

^{52}, N. Kalantarians

^{53}, M. Kohl

^{54}, I. Albayrak

^{55}, M. Carmignotto

^{56}, T. Horn

^{57}, D. S. Gunarathne

^{58}, C. J. Martoff

^{59}, D. L. Olvitt

^{60}, B. Surrow

^{61}, X. Lia

^{62}, R. Beck

^{63}, R. Schmitz

^{64}, D. Walther

^{65}, K. Brinkmann

^{66}, H. Zaunig

^{67}

**Affiliations:**

^{1}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{2}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{3}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{4}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{5}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{6}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{7}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{8}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{9}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{10}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{11}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{12}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{13}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{14}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{15}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{16}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{17}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{18}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{19}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{20}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{21}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{22}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{23}Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA,

^{24}Jefferson Lab, Newport News, VA USA,

^{25}Jefferson Lab, Newport News, VA USA,

^{26}Jefferson Lab, Newport News, VA USA,

^{27}Jefferson Lab, Newport News, VA USA,

^{28}Jefferson Lab, Newport News, VA USA,

^{29}Jefferson Lab, Newport News, VA USA,

^{30}Jefferson Lab, Newport News, VA USA,

^{31}Jefferson Lab, Newport News, VA USA,

^{32}Jefferson Lab, Newport News, VA USA,

^{33}Jefferson Lab, Newport News, VA USA,

^{34}Jefferson Lab, Newport News, VA USA,

^{35}Jefferson Lab, Newport News, VA USA,

^{36}Jefferson Lab, Newport News, VA USA,

^{37}Jefferson Lab, Newport News, VA USA,

^{38}Jefferson Lab, Newport News, VA USA,

^{39}Jefferson Lab, Newport News, VA USA,

^{40}Jefferson Lab, Newport News, VA USA,

^{41}Jefferson Lab, Newport News, VA USA,

^{42}Jefferson Lab, Newport News, VA USA,

^{43}Jefferson Lab, Newport News, VA USA,

^{44}Jefferson Lab, Newport News, VA USA,

^{45}Jefferson Lab, Newport News, VA USA,

^{46}Physics Dept. U.C. Berkeley, Berkeley, CA USA,

^{47}Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA,

^{48}Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA,

^{49}Physics Department, Arizona State University, Tempe,

^{50}Physics Department, Arizona State University, Tempe,

^{51}Los Alamos National Laboratory, Los Alamos NM USA,

^{52}Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA,

^{53}Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA,

^{54}Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA,

^{55}Physics Dept., Catholic University of America, Washington, DC USA,

^{56}Physics Dept., Catholic University of America, Washington, DC USA,

^{57}Physics Dept., Catholic University of America, Washington, DC USA,

^{58}Temple University, Philadelphia PA USA,

^{59}Temple University, Philadelphia PA USA,

^{60}Temple University, Philadelphia PA USA,

^{61}Temple University, Philadelphia PA USA,

^{62}Temple University, Philadelphia PA USA,

^{63}University Bonn, Bonn Germany,

^{64}University Bonn, Bonn Germany,

^{65}University Bonn, Bonn Germany,

^{66}Physikalisches Institut Justus-Liebig-Universitt Giessen, Giessen Germany,

^{67}Physikalisches Institut Justus-Liebig-Universitt Giessen, Giessen Germany

We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays. Read More

Harnessing spins as carriers for information has emerged as an elegant extension to the transport of electrical charges. The coherence of such spin transport in spintronic circuits is determined by the lifetime of spin excitations and by spin diffusion. Fermionic quantum gases are a unique system to study the fundamentals of spin transport from first principles since interactions can be precisely tailored and the dynamics is on time scales which are directly observable. Read More

**Authors:**R. Gilman, E. J. Downie, G. Ron, A. Afanasev, J. Arrington, O. Ates, F. Benmokhtar, J. Bernauer, E. Brash, W. J. Briscoe, K. Deiters, J. Diefenbach, C. Djalali, B. Dongwi, L. El Fassi, S. Gilad, K. Gnanvo, R. Gothe, D. Higinbotham, R. Holt, Y. Ilieva, H. Jiang, M. Kohl, G. Kumbartzki, J. Lichtenstadt, A. Liyanage, N. Liyanage, M. Meziane, Z. -E. Meziani, D. G. Middleton, P. Monaghan, K. E. Myers, C. Perdrisat, E. Piasetzsky, V. Punjabi, R. Ransome, D. Reggiani, P. Reimer, A. Richter, A. Sarty, E. Schulte, Y. Shamai, N. Sparveris, S. Strauch, V. Sulkosky, A. S. Tadepalli, M. Taragin, L. Weinstein

**Category:**Nuclear Experiment

The Proton Radius Puzzle is the inconsistency between the proton radius determined from muonic hydrogen and the proton radius determined from atomic hydrogen level transitions and ep elastic scattering. No generally accepted resolution to the Puzzle has been found. Possible solutions generally fall into one of three categories: the two radii are different due to novel beyond-standard-model physics, the two radii are different due to novel aspects of nucleon structure, and the two radii are the same, but there are underestimated uncertainties or other issues in the ep experiments. Read More

We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism. Read More

We derive analytical expressions for the frequency and damping of the lowest collective modes of a two-dimensional Fermi gas using kinetic theory. For strong coupling, we furthermore show that pairing correlations overcompensate the effects of Pauli blocking on the collision rate for a large range of temperatures, resulting in a rate which is larger than that of a classical gas. Our results agree well with experimental data, and they recover the observed cross-over from collisionless to hydrodynamic behaviour with increasing coupling for the quadruple mode. Read More

**Authors:**X. Qiu, L. Tang, A. Margaryan, P. Achenbach, A. Ahmidouch, I. Albayrak, D. Androic, A. Asaturyan, R. Asaturyan, O. Ates, R. Badui, P. Baturin, W. Boeglin, J. Bono, E. Brash, P. Carter, C. Chen, X. Chen, A. Chiba, E. Christy, M. M. Dalton, S. Danagoulian, R. De Leo, D. Doi, M. Elaasar, R. Ent, H. Fenker, Y. Fujii, M. Furic, M. Gabrielyan, L. Gan, F. Garibaldi, D. Gaskell, A. Gasparian, T. Gogami, O. Hashimoto, T. Horn, B. Hu, E. V. Hungerford, M. Jones, H. Kanda, M. Kaneta, M. Kawai, D. Kawama, H. Khanal, M. Kohl, A. Liyanage, W. Luo, K. Maeda, P. Markowitz, T. Maruta, A. Matsumura, V. Maxwell, A. Mkrtchyan, H. Mkrtchyan, S. Nagao, S. N. Nakamura, A. Narayan, C. Neville, G. Niculescu, M. I. Niculescu, A. Nunez, Nuruzzaman, Y. Okayasu, T. Petkovic, J. Pochodzalla, J. Reinhold, V. M. Rodriguez, C. Samanta, B. Sawatzky, T. Seva, A. Shichijo, V. Tadevosyan, N. Taniya, K. Tsukada, M. Veilleux, W. Vulcan, F. R. Wesselmann, S. A. Wood, L. Ya, T. Yamamoto, Z. Ye, K. Yokota, L. Yuan, S. Zhamkochyan, L. Zhu

**Category:**Nuclear Experiment

The lifetime of a Lambda particle embedded in a nucleus (hypernucleus) decreases from that of free Lambda decay due to the opening of the Lambda N to NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. The present paper reports a direct measurement of the lifetime of medium-heavy hypernuclei produced with a photon-beam from Fe, Cu, Ag, and Bi targets. Read More

We present the realization of a combined trapped-ion and optical cavity system, in which a single Yb^+ ion is confined by a micron-scale ion trap inside a 230 mum-long optical fiber cavity. We characterize the spatial ion-cavity coupling and measure the ion-cavity coupling strength using a cavity-stimulated Lambda-transition. Owing to the small mode volume of the fiber resonator, the coherent coupling strength between the ion and a single photon exceeds the natural decay rate of the dipole moment. Read More

We realize and study an attractively interacting two-dimensional Fermi liquid. Using momentum resolved photoemission spectroscopy, we measure the self-energy, determine the contact parameter of the short-range interaction potential, and find their dependence on the interaction strength. We successfully compare the measurements to a theoretical analysis, properly taking into account the finite temperature, harmonic trap, and the averaging over several two-dimensional gases with different peak densities. Read More

The control of chemical reactions is a recurring theme in physics and chemistry. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, physical methods such as laser or magnetic field control have emerged to provide completely new experimental possibilities, in particular in the realm of cold collisions. Read More

In this paper, we study the success rate of the reconstruction of objects of finite extent given the magnitude of its Fourier transform and its geometrical shape. We demonstrate that the commonly used combination of the hybrid input output and error reduction algorithm is significantly outperformed by an extension of this algorithm based on randomized overrelaxation. In most cases, this extension tremendously enhances the success rate of reconstructions for a fixed number of iterations as compared to reconstructions solely based on the traditional algorithm. Read More

**Authors:**J. L. Hewett, H. Weerts, R. Brock, J. N. Butler, B. C. K. Casey, J. Collar, A. de Gouvea, R. Essig, Y. Grossman, W. Haxton, J. A. Jaros, C. K. Jung, Z. T. Lu, K. Pitts, Z. Ligeti, J. R. Patterson, M. Ramsey-Musolf, J. L. Ritchie, A. Roodman, K. Scholberg, C. E. M. Wagner, G. P. Zeller, S. Aefsky, A. Afanasev, K. Agashe, C. Albright, J. Alonso, C. Ankenbrandt, M. Aoki, C. A. Arguelles, N. Arkani-Hamed, J. R. Armendariz, C. Armendariz-Picon, E. Arrieta Diaz, J. Asaadi, D. M. Asner, K. S. Babu, K. Bailey, O. Baker, B. Balantekin, B. Baller, M. Bass, B. Batell, J. Beacham, J. Behr, N. Berger, M. Bergevin, E. Berman, R. Bernstein, A. J. Bevan, M. Bishai, M. Blanke, S. Blessing, A. Blondel, T. Blum, G. Bock, A. Bodek, G. Bonvicini, F. Bossi, J. Boyce, R. Breedon, M. Breidenbach, S. J. Brice, R. A. Briere, S. Brodsky, C. Bromberg, A. Bross, T. E. Browder, D. A. Bryman, M. Buckley, R. Burnstein, E. Caden, P. Campana, R. Carlini, G. Carosi, C. Castromonte, R. Cenci, I. Chakaberia, M. C. Chen, C. H. Cheng, B. Choudhary, N. H. Christ, E. Christensen, M. E. Christy, T. E. Chupp, E. Church, D. B. Cline, T. E. Coan, P. Coloma, J. Comfort, L. Coney, J. Cooper, R. J. Cooper, R. Cowan, D. F. Cowen, D. Cronin-Hennessy, A. Datta, G. S. Davies, M. Demarteau, D. P. DeMille, A. Denig, R. Dermisek, A. Deshpande, M. S. Dewey, R. Dharmapalan, J. Dhooghe, M. R. Dietrich, M. Diwan, Z. Djurcic, S. Dobbs, M. Duraisamy, B. Dutta, H. Duyang, D. A. Dwyer, M. Eads, B. Echenard, S. R. Elliott, C. Escobar, J. Fajans, S. Farooq, C. Faroughy, J. E. Fast, B. Feinberg, J. Felde, G. Feldman, P. Fierlinger, P. Fileviez Perez, B. Filippone, P. Fisher, B. T. Flemming, K. T. Flood, R. Forty, M. J. Frank, A. Freyberger, A. Friedland, R. Gandhi, K. S. Ganezer, A. Garcia, F. G. Garcia, S. Gardner, L. Garrison, A. Gasparian, S. Geer, V. M. Gehman, T. Gershon, M. Gilchriese, C. Ginsberg, I. Gogoladze, M. Gonderinger, M. Goodman, H. Gould, M. Graham, P. W. Graham, R. Gran, J. Grange, G. Gratta, J. P. Green, H. Greenlee, R. C. Group, E. Guardincerri, V. Gudkov, R. Guenette, A. Haas, A. Hahn, T. Han, T. Handler, J. C. Hardy, R. Harnik, D. A. Harris, F. A. Harris, P. G. Harris, J. Hartnett, B. He, B. R. Heckel, K. M. Heeger, S. Henderson, D. Hertzog, R. Hill, E. A Hinds, D. G. Hitlin, R. J. Holt, N. Holtkamp, G. Horton-Smith, P. Huber, W. Huelsnitz, J. Imber, I. Irastorza, J. Jaeckel, I. Jaegle, C. James, A. Jawahery, D. Jensen, C. P. Jessop, B. Jones, H. Jostlein, T. Junk, A. L. Kagan, M. Kalita, Y. Kamyshkov, D. M. Kaplan, G. Karagiorgi, A. Karle, T. Katori, B. Kayser, R. Kephart, S. Kettell, Y. K. Kim, M. Kirby, K. Kirch, J. Klein, J. Kneller, A. Kobach, M. Kohl, J. Kopp, M. Kordosky, W. Korsch, I. Kourbanis, A. D. Krisch, P. Krizan, A. S. Kronfeld, S. Kulkarni, K. S. Kumar, Y. Kuno, T. Kutter, T. Lachenmaier, M. Lamm, J. Lancaster, M. Lancaster, C. Lane, K. Lang, P. Langacker, S. Lazarevic, T. Le, K. Lee, K. T. Lesko, Y. Li, M. Lindgren, A. Lindner, J. Link, D. Lissauer, L. S. Littenberg, B. Littlejohn, C. Y. Liu, W. Loinaz, W. Lorenzon, W. C. Louis, J. Lozier, L. Ludovici, L. Lueking, C. Lunardini, D. B. MacFarlane, P. A. N. Machado, P. B. Mackenzie, J. Maloney, W. J. Marciano, W. Marsh, M. Marshak, J. W. Martin, C. Mauger, K. S. McFarland, C. McGrew, G. McLaughlin, D. McKeen, R. McKeown, B. T. Meadows, R. Mehdiyev, D. Melconian, H. Merkel, M. Messier, J. P. Miller, G. Mills, U. K. Minamisono, S. R. Mishra, I. Mocioiu, S. Moed Sher, R. N. Mohapatra, B. Monreal, C. D. Moore, J. G. Morfin, J. Mousseau, L. A. Moustakas, G. Mueller, P. Mueller, M. Muether, H. P. Mumm, C. Munger, H. Murayama, P. Nath, O. Naviliat-Cuncin, J. K. Nelson, D. Neuffer, J. S. Nico, A. Norman, D. Nygren, Y. Obayashi, T. P. O'Connor, Y. Okada, J. Olsen, L. Orozco, J. L. Orrell, J. Osta, B. Pahlka, J. Paley, V. Papadimitriou, M. Papucci, S. Parke, R. H. Parker, Z. Parsa, K. Partyka, A. Patch, J. C. Pati, R. B. Patterson, Z. Pavlovic, G. Paz, G. N. Perdue, D. Perevalov, G. Perez, R. Petti, W. Pettus, A. Piepke, M. Pivovaroff, R. Plunkett, C. C. Polly, M. Pospelov, R. Povey, A. Prakesh, M. V. Purohit, S. Raby, J. L. Raaf, R. Rajendran, S. Rajendran, G. Rameika, R. Ramsey, A. Rashed, B. N. Ratcliff, B. Rebel, J. Redondo, P. Reimer, D. Reitzner, F. Ringer, A. Ringwald, S. Riordan, B. L. Roberts, D. A. Roberts, R. Robertson, F. Robicheaux, M. Rominsky, R. Roser, J. L. Rosner, C. Rott, P. Rubin, N. Saito, M. Sanchez, S. Sarkar, H. Schellman, B. Schmidt, M. Schmitt, D. W. Schmitz, J. Schneps, A. Schopper, P. Schuster, A. J. Schwartz, M. Schwarz, J. Seeman, Y. K. Semertzidis, K. K. Seth, Q. Shafi, P. Shanahan, R. Sharma, S. R. Sharpe, M. Shiozawa, V. Shiltsev, K. Sigurdson, P. Sikivie, J. Singh, D. Sivers, T. Skwarnicki, N. Smith, J. Sobczyk, H. Sobel, M. Soderberg, Y. H. Song, A. Soni, P. Souder, A. Sousa, J. Spitz, M. Stancari, G. C. Stavenga, J. H. Steffen, S. Stepanyan, D. Stoeckinger, S. Stone, J. Strait, M. Strassler, I. A. Sulai, R. Sundrum, R. Svoboda, B. Szczerbinska, A. Szelc, T. Takeuchi, P. Tanedo, S. Taneja, J. Tang, D. B. Tanner, R. Tayloe, I. Taylor, J. Thomas, C. Thorn, X. Tian, B. G. Tice, M. Tobar, N. Tolich, N. Toro, I. S. Towner, Y. Tsai, R. Tschirhart, C. D. Tunnell, M. Tzanov, A. Upadhye, J. Urheim, S. Vahsen, A. Vainshtein, E. Valencia, R. G. Van de Water, R. S. Van de Water, M. Velasco, J. Vogel, P. Vogel, W. Vogelsang, Y. W. Wah, D. Walker, N. Weiner, A. Weltman, R. Wendell, W. Wester, M. Wetstein, C. White, L. Whitehead, J. Whitmore, E. Widmann, G. Wiedemann, J. Wilkerson, G. Wilkinson, P. Wilson, R. J. Wilson, W. Winter, M. B. Wise, J. Wodin, S. Wojcicki, B. Wojtsekhowski, T. Wongjirad, E. Worcester, J. Wurtele, T. Xin, J. Xu, T. Yamanaka, Y. Yamazaki, I. Yavin, J. Yeck, M. Yeh, M. Yokoyama, J. Yoo, A. Young, E. Zimmerman, K. Zioutas, M. Zisman, J. Zupan, R. Zwaska

The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms. Read More

The line shape of radio frequency spectra of tightly bound Feshbach molecules in strong transverse confinement can be described by a simple analytic formula that includes final state interactions. By direct comparison to experimental data, we clarify the role of effective range corrections to two-body bound-state energies in lower dimensions. Read More

The dynamics of a single impurity in an environment is a fundamental problem in many-body physics. In the solid state, a well-known case is an impurity coupled to a bosonic bath, for example lattice vibrations. Here the impurity together with its accompanying lattice distortion form a new entity, a polaron. Read More

We perform laser spectroscopy of Yb+ ions on the 4f14 6s 2S_{1/2} - 4f13 5d 6s 3D[3/2]_{1/2} transition at 297 nm. The frequency measurements for 170Yb+, 172Yb+, 174Yb+, and 176Yb+ reveal the specific mass shift as well as the field shifts. In addition, we demonstrate laser cooling of Yb+ ions using this transition and show that light at 297 nm can be used as the second step in the photoionization of neutral Yb atoms. Read More

We investigate the collective excitations of a harmonically trapped two-dimensional Fermi gas from the collisionless (zero sound) to the hydrodynamic (first sound) regime. The breathing mode, which is sensitive to the equation of state, is observed at a frequency two times the dipole mode frequency for a large range of interaction strengths and temperatures, and the amplitude of the breathing mode is undamped. This provides evidence for a dynamical SO(2,1) scaling symmetry of the two-dimensional Fermi gas. Read More

Pairing of fermions is ubiquitous in nature and it is responsible for a large variety of fascinating phenomena like superconductivity, superfluidity of $^3$He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems bear even more subtle effects, many of which lack understanding at a fundamental level. Most striking is the, yet unexplained, effect of high-temperature superconductivity in cuprates, which is intimately related to the two-dimensional geometry of the crystal structure. Read More

**Authors:**W. Luo, E. J. Brash, R. Gilman, M. K. Jones, M. Meziane, L. Pentchev, C. F. Perdrisat, A. J. R. Puckett, V. Punjabi, F. R. Wesselmann, A. Ahmidouch, I. Albayrak, K. A. Aniol, J. Arrington, A. Asaturyan, O. Ates, H. Baghdasaryan, F. Benmokhtar, W. Bertozzi, L. Bimbot, P. Bosted, W. Boeglin, C. Butuceanu, P. Carter, S. Chernenko, M. E. Christy, M. Commisso, J. C. Cornejo, S. Covrig, S. Danagoulian, A. Daniel, A. Davidenko, D. Day, S. Dhamija, D. Dutta, R. Ent, S. Frullani, H. Fenker, E. Frlez, F. Garibaldi, D. Gaskell, S. Gilad, Y. Goncharenko, K. Hafidi, D. Hamilton, D. W. Higinbotham, W. Hinton, T. Horn, B. Hu, J. Huang, G. M. Huber, E. Jensen, H. Kang, C. Keppel, M. Khandaker, P. King, D. Kirillov, M. Kohl, V. Kravtsov, G. Kumbartzki, Y. Li, V. Mamyan, D. J. Margaziotis, P. Markowitz, A. Marsh, Y. Matulenko, J. Maxwell, G. Mbianda, D. Meekins, Y. Melnik, J. Miller, A. Mkrtchyan, H. Mkrtchyan, B. Moffit, O. Moreno, J. Mulholland, A. Narayan, Nuruzzaman, S. Nedev, E. Piasetzky, W. Pierce, N. M. Piskunov, Y. Prok, R. D. Ransome, D. S. Razin, P. E. Reimer, J. Reinhold, O. Rondon, M. Shabestari, A. Shahinyan, K. Shestermanov, S. Sirca, I. Sitnik, L. Smykov, G. Smith, L. Solovyev, P. Solvignon, I. I. Strakovsky, R. Subedi, R. Suleiman, E. Tomasi-Gustafsson, A. Vasiliev, M. Veilleux, S. Wood, Z. Ye, Y. Zanevsky, X. Zhang, Y. Zhang, X. Zheng, L. Zhu

**Category:**Nuclear Experiment

We present new data for the polarization observables of the final state proton in the $^{1}H(\vec{\gamma},\vec{p})\pi^{0}$ reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1. Read More

We have investigated $4s\;^2S_{1/2} \rightarrow 5p\;^2P_{1/2}$ transition ($D_1$ line) of the potassium isotopes $^{39}$K, $^{40}$K, and $^{41}$K using Doppler-free laser saturation spectroscopy. Our measurements reveal the hyperfine splitting of the $5p\;^2P_{1/2}$ state of $^{40}$K and we have determined the specific mass shift and the nuclear field shift constants for the blue $D_1$ line. Read More

The immersion of a single ion confined by a radiofrequency trap in an ultracold atomic gas extends the concept of buffer gas cooling to a new temperature regime. The steady state energy distribution of the ion is determined by its kinetics in the radiofrequency field rather than the temperature of the buffer gas. Moreover, the finite size of the ultracold gas facilitates the observation of back-action of the ion onto the buffer gas. Read More

**Authors:**M. Meziane, E. J. Brash, R. Gilman, M. K. Jones, W. Luo, L. Pentchev, C. F. Perdrisat, A. J. R. Puckett, V. Punjabi, F. R. Wesselmann, A. Ahmidouch, I. Albayrak, K. A. Aniol, J. Arrington, A. Asaturyan, O. Ates, H. Baghdasaryan, F. Benmokhtar, W. Bertozzi, L. Bimbot, P. Bosted, W. Boeglin, C. Butuceanu, P. Carter, S. Chernenko, E. Christy, M. Commisso, J. C. Cornejo, S. Covrig, S. Danagoulian, A. Daniel, A. Davidenko, D. Day, S. Dhamija, D. Dutta, R. Ent, S. Frullani, H. Fenker, E. Frlez, F. Garibaldi, D. Gaskell, S. Gilad, Y. Goncharenko, K. Hafidi, D. Hamilton, D. W. Higinbotham, W. Hinton, T. Horn, B. Hu, J. Huang, G. M. Huber, E. Jensen, H. Kang, C. Keppel, M. Khandaker, P. King, D. Kirillov, M. Kohl, V. Kravtsov, G. Kumbartzki, Y. Li, V. Mamyan, D. J. Margaziotis, P. Markowitz, A. Marsh, Y. Matulenko, J. Maxwell, G. Mbianda, D. Meekins, Y. Melnik, J. Miller, A. Mkrtchyan, H. Mkrtchyan, B. Moffit, O. Moreno, J. Mulholland, A. Narayan, Nuruzzaman, S. Nedev, E. Piasetzky, W. Pierce, N. M. Piskunov, Y. Prok, R. D. Ransome, D. S. Razin, P. E. Reimer, J. Reinhold, O. Rondon, M. Shabestari, A. Shahinyan, K. Shestermanov, S. Sirca, I. Sitnik, L. Smykov, G. Smith, L. Solovyev, P. Solvignon, R. Subedi, R. Suleiman, E. Tomasi-Gustafsson, A. Vasiliev, M. Vanderhaeghen, M. Veilleux, B. B. Wojtsekhowski, S. Wood, Z. Ye, Y. Zanevsky, X. Zhang, Y. Zhang, X. Zheng, L. Zhu

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $G_{E}/G_{M}$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $H(\vec{e},e'\vec{p})$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2. Read More

We realize and study a strongly interacting two-component atomic Fermi gas confined to two dimensions in an optical lattice. Using radio-frequency spectroscopy we measure the interaction energy of the strongly interacting gas. We observe the confinement-induced Feshbach resonance and find the existence of confinement-induced molecules in very good agreement with theoretical predictions. Read More

In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. Read More

Object orientation provides a flexible framework for the implementation of the convolution of arbitrary distributions of real-valued random variables. We discuss an algorithm which is based on the discrete Fourier transformation (DFT) and its fast computability via the fast Fourier transformation (FFT). It directly applies to lattice-supported distributions. Read More

We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The observed energy-dependent elastic atom-ion scattering rate deviates significantly from the prediction of Langevin but is in full agreement with the quantum mechanical cross section. Read More

**Authors:**A. J. R. Puckett, E. J. Brash, M. K. Jones, W. Luo, M. Meziane, L. Pentchev, C. F. Perdrisat, V. Punjabi, F. R. Wesselmann, A. Ahmidouch, I. Albayrak, K. A. Aniol, J. Arrington, A. Asaturyan, H. Baghdasaryan, F. Benmokhtar, W. Bertozzi, L. Bimbot, P. Bosted, W. Boeglin, C. Butuceanu, P. Carter, S. Chernenko, E. Christy, M. Commisso, J. C. Cornejo, S. Covrig, S. Danagoulian, A. Daniel, A. Davidenko, D. Day, S. Dhamija, D. Dutta, R. Ent, S. Frullani, H. Fenker, E. Frlez, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, Y. Goncharenko, K. Hafidi, D. Hamilton, D. W. Higinbotham, W. Hinton, T. Horn, B. Hu, J. Huang, G. M. Huber, E. Jensen, C. Keppel, M. Khandaker, P. King, D. Kirillov, M. Kohl, V. Kravtsov, G. Kumbartzki, Y. Li, V. Mamyan, D. J. Margaziotis, A. Marsh, Y. Matulenko, J. Maxwell, G. Mbianda, D. Meekins, Y. Melnik, J. Miller, A. Mkrtchyan, H. Mkrtchyan, B. Moffit, O. Moreno, J. Mulholland, A. Narayan, S. Nedev, Nuruzzaman, E. Piasetzky, W. Pierce, N. M. Piskunov, Y. Prok, R. D. Ransome, D. S. Razin, P. Reimer, J. Reinhold, O. Rondon, M. Shabestari, A. Shahinyan, K. Shestermanov, S. Sirca, I. Sitnik, L. Smykov, G. Smith, L. Solovyev, P. Solvignon, R. Subedi, E. Tomasi-Gustafsson, A. Vasiliev, M. Veilleux, B. B. Wojtsekhowski, S. Wood, Z. Ye, Y. Zanevsky, X. Zhang, Y. Zhang, X. Zheng, L. Zhu

Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6. Read More