# M. Herrero

## Contact Details

NameM. Herrero |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (43) High Energy Physics - Experiment (5) Mathematics - Algebraic Geometry (4) Computer Science - Symbolic Computation (2) Mathematics - Commutative Algebra (2) High Energy Physics - Theory (2) Mathematics - Mathematical Physics (1) Physics - Physics and Society (1) Computer Science - Data Structures and Algorithms (1) Mathematical Physics (1) Mathematics - Combinatorics (1) Computer Science - Computational Complexity (1) Quantitative Biology - Tissues and Organs (1) Quantitative Biology - Cell Behavior (1) |

## Publications Authored By M. Herrero

In this work we present a new computation of the Lepton Flavor Violating Higgs boson decays that are generated radiatively to one-loop from heavy right-handed neutrinos. We work within the context of the Inverse Seesaw model with three $\nu_R$ and three extra singlets $X$, but the results could be generalized to other Low Scale Seesaw models. The novelty of our computation is that it uses a completely different method by means of the Mass Insertion Approximation which works with the electroweak interaction states instead of the usual 9 physical neutrino mass eigenstates of the Inverse Seesaw model. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

In this paper we study the Lepton Flavor Violating $Z$ boson decays $Z \to \tau \mu$ and $Z \to \tau e$ in the context of low scale seesaw models with new heavy Majorana neutrinos whose masses could be reachable at the LHC. Our computations of the decay rates are done in the particular realization given by the Inverse Seesaw Model with six extra heavy neutrinos which are quasi-degenerate in three pseudo-Dirac pairs. In particular, we focus on scenarios that are built ad-hoc to produce suppressed rates in all the processes involving $\mu$-$e$ transitions, given the fact that these are by far the most strongly constrained by present data. Read More

The observation of charged lepton flavour violation would be a smoking gun for new physics and could help in pinpointing the mechanism at the origin of neutrino masses and mixing. We present here our recent studies of lepton flavour violating Higgs decays in the inverse seesaw and its supersymmetric embedding, two examples of low-scale seesaw mechanisms. We predict branching ratios as large as $10^{-5}$ for the decays $h\rightarrow \tau \mu$ and $h \rightarrow \tau e$ in the inverse seesaw, which can be probed in future colliders. Read More

We give a description of the tropical variety of univariate polynomials of degree n having two double roots. As a set, it is given as the union of three types of maximal cones of dimension n-1, where only cones of two of these types are cones of the secondary fan of {0,.. Read More

In this paper we study the lepton favor violating decay channels of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model into a lepton and an anti-lepton of different flavor. We work in the context of the most general flavor mixing scenario in the slepton sector, in contrast to the minimal flavor violation assumption more frequently used. Our analytic computation is a one-loop diagrammatic one, but in contrast to the full one-loop computation which is usually referred to the physical slepton mass basis, we use here instead the Mass Insertion Approximation (MIA) which uses the electroweak interaction slepton basis and treats perturbatively the mass insertions changing slepton flavor. Read More

In this letter we study new relevant phenomenological consequences of the right-handed heavy neutrinos with masses at the ${\cal O}(1)$ TeV energy scale, working within the context of the Inverse Seesaw Model that includes three pairs of quasi-degenerate pseudo-Dirac heavy neutrinos. We propose a new exotic signal of these heavy neutrinos at the CERN Large Hadron Collider containing a muon, a tau lepton, and two jets in the final state, which is based on the interesting fact that this model can incorporate large Lepton Flavor Violation for specific choices of the relevant parameters, particularly, the neutrino Yukawa couplings. We will show here that an observable number of $\mu\tau jj$ exotic events, without missing energy, can be produced at this ongoing run of the LHC. Read More

In this article we study the full one-loop SUSY contributions to the lepton flavor violating Higgs decay $h \to \tau \bar \mu $, within the context of the supersymmetric inverse sesaw model. We assume that both the right-handed neutrino masses, $M_R$, and their supersymmetric partner masses, $m_{\tilde \nu_R}$, are not far from the interesting ${\cal O}({\rm TeV})$ energy scale, and we work with scenarios with large neutrino Yukawa couplings that transmit large lepton flavor violating effects. By exploring the behavior with the most relevant parameters, mainly $M_R$, $m_{\tilde \nu_R}$ and the trilinear sneutrino coupling $A_\nu$, we will look for regions of the parameter space where the enhancement of $\mathrm{BR}(h\rightarrow \tau \bar \mu)$ is large enough to reach values at the percent level, which could explain the excess recently reported by CMS and ATLAS at the CERN Large Hadron Collider. Read More

We consider the problem of deciding whether a common solution to a multivariate polynomial equation system is isolated or not. We present conditions on a given truncated Puiseux series vector centered at the point ensuring that it is not isolated. In addition, in the case that the set of all common solutions of the system has dimension 1, we obtain further conditions specifying to what extent the given vector of truncated Puiseux series coincides with the initial part of a parametrization of a curve of solutions passing through the point. Read More

In these proceedings we provide a brief summary of the findings of a previous article where we have studied the photon-photon scattering into longitudinal weak bosons within the context of the electroweak chiral Lagrangian with a light Higgs, a low-energy effective field theory including a Higgs-like scalar singlet and where the electroweak would-be Goldstone bosons are non-linearly realized. We consider the relevant Lagrangian up to next-to-leading order in the chiral counting, which is explained in some detail here. We find that these amplitudes are ultraviolet finite and the relevant combinations of next-to-leading parameters ($c_\gamma$ and $a_1-a_2+a_3$) do not get renormalized. Read More

In the inverse seesaw model (ISS), the smallness of the neutrino masses is related to the smallness of a lepton number violating mass term whilst the seesaw scale is naturally close to the TeV scale, which allows for large effects in lepton flavor and universality violating observables. With the ongoing and planned measurements of the Higgs boson properties at the LHC, we found timely to investigate the possibility of having large lepton flavor violating Higgs decay (LFVHD) rates within the context of the ISS, considering the most generic case where three additional pairs of massive right-handed singlet neutrinos are added to the Standard Model particle content. We present a full one-loop computation of the LFVHD rates and analyze in full detail the predictions as functions of the various relevant ISS parameters, which are required to be compatible with the present neutrino data and the present experimental bounds for the three LFV radiative decays, and also consistent with other constraints, like perturbativity of the neutrino Yukawa couplings. Read More

In these proceedings we discuss our recent work on $\gamma\gamma\to W^+_L W^-_L$ and $\gamma\gamma\to Z_L Z_L$ within the framework of Electroweak Chiral Lagrangians with a light Higgs. These observables are good candidates to provide indications of physics beyond the Standard Model and can complement other analyses and global fits. Making use of the equivalence theorem, we have performed the computation up to the next-to-leading order in the chiral expansion, i. Read More

Tumor cells develop different features to adapt to environmental conditions. A prominent example is the ability of tumor cells to switch between migratory and proliferative phenotypes, a phenomenon known as go-or-grow mechanism. It is however unclear how this particular phenotypic plasticity affects overall tumor growth. Read More

In this work we study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in agreement with present neutrino data. Read More

We present our study of lepton flavour violating decays of a Higgs boson with properties compatible with those of the particle recently discovered at the LHC. We worked in the context of the inverse seesaw model, considering the most generic case where the Standard Model is extended by three pairs of fermionic singlets in order to generate the neutrino masses and mixings required by neutrino oscillations. Using a full one-loop calculation together with the most recent experimental and theoretical constraints, we discuss the dependence on the parameters of the inverse seesaw model before concluding on the largest allowed branching ratios through scans over the full parameter space. Read More

We explore the phenomenological implications on non-minimal flavor violating (NMFV) processes from squark flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the squark sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L, R; i,j = u, c, t or d, s, b) parameters. The present upper bounds on the most relevant NMFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and g-2 data, lead to updated constraints on all squark flavor mixing parameters. Read More

In this paper we consider a Higgs boson with mass and other properties compatible with those of the recently discovered Higgs particle at the LHC, and explore the possibility of new Higgs leptonic decays, beyond the standard model, with the singular feature of being lepton flavor violating (LFV). We study these LFV Higgs decays, $H \to l_k\bar l_m$, within the context of the inverse seesaw model (ISS) and consider the most generic case where three additional pairs of massive right-handed singlet neutrinos are added to the standard model particle content. We require in addition that the input parameters of this ISS model are compatible with the present neutrino data and other constraints, like perturbativity of the neutrino Yukawa couplings. Read More

In this work we study the $\gamma\gamma\to W^+_L W^-_L$ and $\gamma\gamma\to Z_L Z_L$ scattering processes within the effective chiral Lagrangian approach, including a light Higgs-like scalar as a dynamical field together with the would-be-Goldstone bosons $w^\pm$ and $z$ associated to the electroweak symmetry breaking. This approach is inspired by the possibility that the Higgs-like boson be a composite particle behaving as another Goldstone boson, and assumes the existence of a mass gap between $m_h$, $m_W$, $m_Z$ and the potential new emergent resonances, setting an intermediate energy region (above $m_{h,W,Z}$ and below the resonance masses) where the use of these effective chiral Lagrangians are the most appropriate tools to compute the relevant observables. We analyse in detail the proper chiral counting rules for the present case of photon-photon scattering and provide the computation of the one-loop $\gamma\gamma\to W^+_L W^-_L$ and $\gamma\gamma\to Z_L Z_L$ scattering amplitudes within this Effective Chiral Lagrangian approach and the Equivalence Theorem, including a discussion on the involved renormalization procedure. Read More

In this note we shortly comment on our analytical results in PRD73(2006)055003 for the $Z$ boson one-loop form factors contributing to the Lepton Flavour Violating $Z$ penguin diagrams in SUSY. In a recent communication [arXiv:1312.5318v1] it has been pointed out a mistake in our formulas for the chargino contribution to the $Z$-form factor, $F_L^{(c)}$, and these authors have included corrections to our results in a way that we do not agree with. Read More

After the discovery of the Higgs boson particle on the 4th of July of 2012 at the Large Hadron Collider, sited at the european CERN laboratory, we are entering in a fascinating period for Particle Physics where both theorists and experimentalists are devoted to fully understand the features of this new particle and the possible consequences for High Energy Physics of the Higgs system both within and beyond the Standard Model of fundamental particle interactions. This paper is a summary of the lectures given at the third IDPASC school (Santiago de Compostela, Feb. 2013, Spain) addressed to PhD students, and contains a short introduction to the main basic aspects of the Higgs boson particle in and beyond the Standard Model. Read More

The recent discovery of a SM-like Higgs boson at the LHC, with a mass around 125-126 GeV, together with the absence of results in the direct searches for supersymmetry, is pushing the SUSY scale ($m_\text{SUSY}$) into the multi-TeV range. This discouraging situation from a low-energy SUSY point of view has its counterpart in indirect SUSY observables which present a non-decoupling behavior with $m_\text{SUSY}$. This is the case of the one-loop lepton flavor violating Higgs decay rates induced by SUSY, which are shown here to remain constant as $m_\text{SUSY}$ grows, for large $m_\text{SUSY} >$ 2 TeV values and for all classes of intergenerational mixing in the slepton sector, $LL$, $LR$, $RL$ and $RR$. Read More

We explore the phenomenological implications on charged lepton flavor violating (LFV) processes from slepton flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the slepton sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L,R; i,j = 1, 2, 3) parameters. The present upper bounds on the most relevant LFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and (g-2) data, lead to updated constraints on all slepton flavor mixing parameters. Read More

We present a new probabilistic symbolic algorithm that, given a variety defined in an n-dimensional affine space by a generic sparse system with fixed supports, computes the Zariski closure of its projection to an l-dimensional coordinate affine space with l < n. The complexity of the algorithm depends polynomially on combinatorial invariants associated to the supports. Read More

This paper deals with the modeling of social competition, possibly resulting in the onset of extreme conflicts. More precisely, we discuss models describing the interplay between individual competition for wealth distribution that, when coupled with political stances coming from support or opposition to a government, may give rise to strongly self-enhanced effects. The latter may be thought of as the early stages of massive, unpredictable events known as Black Swans, although no analysis of any fully-developed Black Swan is provided here. Read More

We review the computation of the one-loop radiative corrections from the neutrino/ sneutrino sector to the lightest Higgs boson mass, Mh, within the context of the so-called MSSM-seesaw scenario. This model introduces right handed neutrinos and their supersymmetric partners, the sneutrinos, including Majorana mass terms. We find negative and sizeable corrections to Mh, up to -5 GeV for a large Majorana scale, 10^{13}-10^{15} GeV, and for the lightest neutrino mass in a range 0. Read More

We calculate the one-loop corrections to the Higgs boson masses within the context of the MSSM with Non-Minimal Flavor Violation in the squark sector. We take into account all the relevant restrictions from BR(B -> X_s gamma), BR(B_s -> mu^+ mu^-) and \Delta M_{B_s}. We find sizable corrections to the lightest Higgs boson mass that are considerably larger than the expected ILC precision for acceptable values of the mixing parameters deltas. Read More

We study the effects of heavy Majorana neutrinos on the Higgs sector of the MSSM via radiative corrections. We work within the SUSY context where the MSSM particle content is enlarged with right handed neutrinos and their corresponding SUSY partners, the sneutrinos, and where compatibility with neutrino data is required. We compute the one-loop corrections to the mass of the lightest MSSM CP-even neutral Higgs boson from Majorana neutrinos and their SUSY partners and assume a seesaw mechanism of type I for neutrino mass generation. Read More

This paper focuses on the equidimensional decomposition of affine varieties defined by sparse polynomial systems. For generic systems with fixed supports, we give combinatorial conditions for the existence of positive dimensional components which characterize the equidimensional decomposition of the associated affine variety. This result is applied to design an equidimensional decomposition algorithm for generic sparse systems. Read More

We present one-loop corrections to the Higgs boson masses in the MSSM with Non-Minimal Flavor Violation. The flavor violation is generated from the hypothesis of general flavor mixing in the squark mass matrices, and these are parameterized by a complete set of delta^XY_ij (X, Y = L,R; i; j = t, c, u or b, s, d). We calculate the corrections to the Higgs masses in terms of these delta^XY_ij taking into account all relevant restrictions from B-physics data. Read More

We construct a supersymmetric NS5-brane wrapped on a twisted 5-sphere expanding in the $CP^3$ in $AdS_4\times CP^3$, with D0-brane charge. This configuration provides a realization of the stringy exclusion principle in terms of giant D0-branes. In the maximal case the twisted 5-sphere reduces to a $CP^2$ and its energy can be accounted for both by a bound state of $k$ D4-branes wrapping the $CP^2$ and a bound state of $N$ D0-branes, a realization on the gravity side of the symmetry of Young diagrams with $N$ rows and $k$ columns. Read More

We review the main results of the one-loop radiative corrections from the neutrino/sneutrino sector to the lightest Higgs boson mass, M_h, within the context of the so-called MSSM-seesaw scenario where right handed neutrinos and their supersymmetric partners are included in order to explain neutrino masses. For simplicity, we have restricted ourselves to the one generation case. We find sizable corrections to M_h, which are negative in the region where the Majorana scale is large (10^{13} - 10^{15} GeV) and the lightest neutrino mass is within a range inspired by data (0. Read More

We present a full diagrammatic computation of the one-loop corrections from the neutrino/sneutrino sector to the renormalized neutral CP-even Higgs boson self-energies and the lightest Higgs boson mass, Mh, within the context of the so-called MSSM-seesaw scenario. This consists of the Minimal Supersymmetric Standard Model with the addition of massive right handed Majorana neutrinos and their supersymmetric partners, and where the seesaw mechanism is used for the lightest neutrino mass generation. We explore the dependence on all the parameters involved, with particular emphasis in the role played by the heavy Majorana scale. Read More

Here we study and compare the sensitivity to the Higgs sector of the SUSY-seesaw models via the LFV tau decays: tau-> 3 mu, tau->K^{+}K^{-}, tau->mu eta and tau-> mu f_{0}. We emphasize that, at present, the two later channels are the most efficient ones to test indirectly the Higgs particles. Read More

In this work we study the Lepton Flavour Violating semileptonic tau --> mu f0(980) decay within the context of SUSY-Seesaw Models, where the MSSM spectrum is extended by three right handed neutrinos and their SUSY partners, and where the seesaw mechanism is used to generate the neutrino masses. We estimate its decay rate when it proceeds via the Higgs mediated channel tau --> mu H* --> mu f0(980), where H refers to the CP-even MSSM Higgs bosons h^0 and H^0, and the Lepton Flavour Violating tau mu H vertex is radiatively generated via SUSY loops. In order to describe the f0(980) meson we follow the guidelines from chiral constraints. Read More

In this paper we review our main results for Lepton Flavour Violating (LFV) semileptonic tau decays and muon-electron conversion in nuclei within the context of two Constrained SUSY-Seesaw Models, the CMSSM and the NUHM. The relevant spectrum is that of the Minimal Supersymmetric Standard Model extended by three right handed neutrinos, $\nu_{R_i}$ and their corresponding SUSY partners, ${\tilde \nu}_{R_i}$, ($i=1,2,3$). We use the seesaw mechanism for neutrino mass generation and choose a parameterisation of this mechanism that allows us to incorporate the neutrino data in our analysis of LFV processes. Read More

We calculate the predictions for lepton flavour violating (LFV) tau and muon decays, $l_j \to l_i \gamma$, $l_j \to 3 l_i$, $\mu-e$ conversion in nuclei and LFV semileptonic tau decays $\tau \to \mu PP$ with $PP= \pi^+\pi^-, \pi^0\pi^0, K^+K^-, K^0 {\bar K}^0$ $\tau \to \mu P$ with $P=\pi^0, \eta, \eta'$ and $\tau \to \mu V$ with $V = \rho^0, \phi$, performing the hadronisation of quark bilinears within the chiral framework. We work within a SUSY-seesaw context where the particle content of the Minimal Supersymmetric Standard Model is extended by three right-handed neutrinos plus their corresponding SUSY partners, and where a seesaw mechanism for neutrino mass generation is implemented. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. Read More

Here we review the main results of LFV in the semileptonic tau decays $\tau \to \mu PP$ ($PP = \pi^+ \pi^-, \pi^0 \pi^0, K^+ K^-, K^0 \bar{K}^0$), $\tau \to \mu P$ ($P = \pi, \eta, \eta^{\prime}$), and $\tau \to \mu V$ ($V = \rho, \phi$) as well as in $\mu-e$ conversion in nuclei within SUSY-seesaw scenarios, and compare our predictions with the present experimental bounds Read More

In this work we study the Lepton Flavour Violating semileptonic $\tau$ decays: 1) $\tau \to \mu PP$ with $PP= \pi^+\pi^-, \pi^0\pi^0, K^+K^-, K^0 {\bar K}^0$; 2) $\tau \to \mu P$ with $P=\pi^0, \eta, \eta'$ and 3) $\tau \to \mu V$ with $V = \rho^0, \phi$. We work within the context of two constrained MSSM scenarios: the CMSSM and NUHM. A full one-(SUSY)loop computation is presented and the importance of the various contributions, the $\gamma$-, $Z$-, and Higgs bosons mediated ones are analysed. Read More

**Authors:**M. Raidal, A. van der Schaaf, I. Bigi, M. L. Mangano, Y. Semertzidis, S. Abel, S. Albino, S. Antusch, E. Arganda, B. Bajc, S. Banerjee, C. Biggio, M. Blanke, W. Bonivento, G. C. Branco, D. Bryman, A. J. Buras, L. Calibbi, A. Ceccucci, P. H. Chankowski, S. Davidson, A. Deandrea, D. P. DeMille, F. Deppisch, M. Diaz, B. Duling, M. Felcini, W. Fetscher, D. K. Ghosh, M. Giffels, G. Giudice, E. Goudzovskij, T. Han, P. G. Harris, M. J. Herrero, J. Hisano, R. J. Holt, K. Huitu, A. Ibarra, O. Igonkina, A. Ilakovac, J. Imazato, G. Isidori, F. R. Joaquim, M. Kadastik, Y. Kajiyama, S. F. King, K. Kirch, M. G. Kozlov, M. Krawczyk, T. Kress, O. Lebedev, A. Lusiani, E. Ma, G. Marchiori, I. Masina, G. Moreau, T. Mori, M. Muntel, F. Nesti, C. J. G. Onderwater, P. Paradisi, S. T. Petcov, M. Picariello, V. Porretti, A. Poschenrieder, M. Pospelov, L. Rebane, M. N. Rebelo, A. Ritz, L. Roberts, A. Romanino, A. Rossi, R. Rueckl, G. Senjanovic, N. Serra, T. Shindou, Y. Takanishi, C. Tarantino, A. M. Teixeira, E. Torrente-Lujan, K. J. Turzynski, T. E. J. Underwood, S. K. Vempati, O. Vives

This chapter of the report of the ``Flavour in the era of the LHC'' Workshop discusses the theoretical, phenomenological and experimental issues related to flavour phenomena in the charged lepton sector and in flavour-conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavour structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the Standard Model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments. Read More

Here we update the predictions for lepton flavour violating tau and muon decays, $l_j \to l_i \gamma$, $l_j \to 3 l_i$, and $\mu-e$ conversion in nuclei. We work within a SUSY-seesaw context where the particle content of the Minimal Supersymmetric Standard Model is extended by three right handed neutrinos plus their corresponding SUSY partners, and where a seesaw mechanism for neutrino mass generation is implemented. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. Read More

We address the constraints on the SUSY seesaw parameters arising from Lepton Flavour Violation observables. Working in the Constrained Minimal Supersymmetric Standard Model extended by three right-handed (s)neutrinos, we study the predictions for the branching ratios of $l_j \to l_i \gamma$ and $l_j \to 3 l_i$ channels. We impose compatibility with neutrino data, electric dipole moment bounds, and further require a successful baryon asymmetry of the Universe (via thermal leptogenesis). Read More

In this paper we study $\mu-e$ conversion in nuclei within the context of the Constrained Minimal Supersymmetric Standard Model, enlarged by three right handed neutrinos and their supersymmetric partners, and where the neutrino masses are generated via a seesaw mechanism. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. In the first part we present a complete one-loop computation of the conversion rate for this process that includes the photon-, $Z$-boson, and Higgs-boson penguins, as well as box diagrams, and compare their size in the two considered scenarios. Read More

In these proceedings we present the results for lepton flavour violating tau and muon decays within the SUSY seesaw scenario. Specifically, we consider the Constrained Minimal Supersymmetric Standard Model extended by three right handed neutrinos, $\nu_{R_i}$ and their corresponding SUSY partners, ${\tilde \nu}_{R_i}$, ($i=1,2,3$), and use the seesaw mechanism for neutrino mass generation. We include the predictions for the branching ratios of two types of lepton flavour violating channels, $l_j \to \l_i \gamma$ and $l_j \to 3 l_i$, and compare them with the present bounds and future experimental sensitivities. Read More

We study the impact of neutrino masses and mixings on LFV processes within the context of the supersymmetric seesaw scenario, where the CMSSM is extended by three right-handed (s)neutrinos. A hierarchical spectrum is considered for both heavy and light neutrinos. We systematically analyse the interesting relation between the leptonic mixing angle $\theta_{13}$ and LFV muon and tau decays, namely $l_j \to l_i \gamma$ and $l_j \to 3 l_i$, and discuss the interplay with the other relevant parameters. Read More

In this work the following lepton flavor violating $\tau$ and $\mu$ decays are studied: $\tau^- \to \mu^- \mu^- \mu^+$, $\tau^- \to e^- e^- e^+$, $\mu^- \to e^- e^- e^+$, $\tau^- \to \mu^- \gamma$, $\tau^- \to e^- \gamma$ and $\mu^- \to e^- \gamma$. We work in a constrained supersymmetric scenario with universal soft breaking terms and where the MSSM particle content is extended by the addition of three heavy right handed Majorana neutrinos and their supersymmetric partners. The generation of neutrino masses is done via the seesaw mechanism. Read More

In this work the following lepton flavor violating $\tau$ and $\mu$ decays are studied: $\tau^- \to \mu^- \mu^- \mu^+$, $\tau^- \to e^- e^- e^+$, $\mu^- \to e^- e^- e^+$, $\tau^- \to \mu^- \gamma$, $\tau^- \to e^- \gamma$ and $\mu^- \to e^- \gamma$. We work in a supersymmetric scenario consisting of the minimal supersymmetric standard model particle content, extended by the addition of three heavy right handed Majorana neutrinos and their supersymmetric partners, and where the generation of neutrino masses is done via the seesaw mechanism. Within this context, a significant lepton flavor mixing is generated in the slepton sector due to the Yukawa neutrino couplings, which is transmited from the high to the low energies via the renormalization group equations. Read More

Lepton flavor violating Higgs boson decays (LFVHD) are studied in the context of the Minimal Supersymmetric Standard Model (MSSM) being embeded in a mSUGRA scenario that is enlarged with three right handed neutrinos and their supersymmetric partners, and with the neutrino masses being generated by the seesaw mechanism. We compute the partial widths for these decays to one-loop order and analyze numerically the corresponding branching ratios in terms of the mSUGRA and seesaw parameters. We analyze in parallel the lepton flavor changing $\l_j\to l_i \gamma$ decays and explore the maximum predicted rates for LFVHD, mainly for $H^0,A^0 \to \tau {\bar \mu}$ decays, by requiring compatibility with neutrino and $BR(\l_j\to l_i \gamma)$ data. Read More

Lepton flavor violating Higgs boson decays (LFVHD) are studied in the context of the Minimal Supersymmetric Standard Model (MSSM) enlarged with three right handed neutrinos and their supersymmetric partners, and with the neutrino masses being generated by the seesaw mechanism. We compute the partial widths for these decays to one-loop order and analyze numerically the corresponding branching ratios in terms of the MSSM and seesaw parameters. We analyze in parallel the lepton flavor changing $\l_j\to l_i \gamma$ decays and explore the maximum predicted rates for LFVHD, mainly for $H^0,A^0 \to \tau {\bar \mu}$ decays, by requiring compatibility with neutrino and $BR(\l_j\to l_i \gamma)$ data. Read More

Lepton flavor violating Higgs boson decays are studied within the context of seesaw models with Majorana massive neutrinos. Two models are considered: The SM-seesaw, with the Standard Model Particle content plus three right handed neutrinos, and the MSSM-seesaw, with the Minimal Supersymmetric Standard Model particle content plus three right handed neutrinos and their supersymmetric partners. The widths for these decays are derived from a full one-loop diagrammatic computation in both models, and they are analyzed numerically in terms of the seesaw parameters, namely, the Dirac and Majorana mass matrices. Read More

We compute the genuine SUSY one-loop quantum contributions to flavour-changing MSSM Higgs-boson decays into $b \bar s$ and $s \bar b$ using the full diagrammatic approach that is valid for all $\tan \beta$ values and do not rely on the mass-insertion approximation for the characteristic flavour-changing parameter. We analyze in full detail the dependence of these flavour-changing partial widths on all the relevant MSSM parameters and also study the non-decoupling behaviour of these widths with the SUSY mass parameters. We find that these contributions are sizable as compared to the SM ones, and can be very efficient as an indirect method in the future search for Supersymmetry. Read More