M. Grassi - University of Pavia, Italy

M. Grassi
Are you M. Grassi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. Grassi
Affiliation
University of Pavia, Italy
City
Pavia
Country
Italy

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Experiment (34)
 
Physics - Instrumentation and Detectors (27)
 
High Energy Physics - Phenomenology (9)
 
Nuclear Experiment (6)
 
Instrumentation and Methods for Astrophysics (6)
 
Mathematics - Differential Geometry (5)
 
Mathematics - Algebraic Geometry (2)
 
Mathematics - Representation Theory (2)
 
High Energy Astrophysical Phenomena (1)
 
Physics - Materials Science (1)

Publications Authored By M. Grassi

Sol-gel transition of carboxylated cellulose nanocrystals is investigated using rheology, SAXS, NMR and optical spectroscopies to unveil the distinctive roles of ultrasounds treatment and ions addition. Besides cellulose fibers fragmentation, sonication treatment induces fast gelling of the solution. Gelation is induced independently on the addition of cations, while the final rheological properties are highly influenced by the type, the concentration as well as on the sequence of the operations since salts must be added before sonication to produce stiff gels. Read More

2017May
Authors: C. E. Aalseth, F. Acerbi, P. Agnes, I. F. M. Albuquerque, T. Alexander, A. Alici, A. K. Alton, P. Ampudia, P. Antonioli, S. Arcelli, R. Ardito, I. J. Arnquist, D. M. Asner, H. O. Back, G. Batignani, E. Bertoldo, S. Bettarini, M. G. Bisogni, V. Bocci, A. Bondar, G. Bonfini, W. Bonivento, M. Bossa, B. Bottino, R. Bunker, S. Bussino, A. Buzulutskov, M. Cadeddu, M. Cadoni, A. Caminata, N. Canci, A. Candela, C. Cantini, M. Caravati, M. Cariello, M. Carlini, M. Carpinelli, A. Castellani, S. Catalanotti, V. Cataudella, P. Cavalcante, R. Cereseto, Y. Chen, A. Chepurnov, A. Chiavassa, C. Cicalò, L. Cifarelli, M. Citterio, A. G. Cocco, M. Colocci, S. Corgiolu, G. Covone, P. Crivelli, I. D'Antone, M. D'Incecco, M. D. Da Rocha Rolo, M. Daniel, S. Davini, A. De Candia, S. De Cecco, M. De Deo, G. De Filippis, G. De Guido, G. De Rosa, G. Dellacasa, P. Demontis, A. V. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, C. Dionisi, A. Dolgov, I. Dormia, S. Dussoni, A. Empl, A. Ferri, C. Filip, G. Fiorillo, K. Fomenko, D. Franco, G. E. Froudakis, F. Gabriele, A. Gabrieli, C. Galbiati, P. Garcia Abia, A. Gendotti, A. Ghisi, S. Giagu, G. Gibertoni, C. Giganti, M. Giorgi, G. K. Giovanetti, M. L. Gligan, A. Gola, O. Gorchakov, A. M. Goretti, F. Granato, M. Grassi, J. W. Grate, G. Y. Grigoriev, M. Gromov, M. Guan, M. B. B. Guerra, M. Guerzoni, M. Gulino, R. K. Haaland, B. Harrop, E. W. Hoppe, S. Horikawa, B. Hosseini, D. Hughes, P. Humble, E. V. Hungerford, An. Ianni, S. Jimenez Cabre, T. N. Johnson, K. Keeter, C. L. Kendziora, S. Kim, G. Koh, D. Korablev, G. Korga, A. Kubankin, R. Kugathasan, M. Kuss, X. Li, M. Lissia, G. U. Lodi, B. Loer, G. Longo, R. Lussana, L. Luzzi, Y. Ma, A. A. Machado, I. N. Machulin, L. Mais, A. Mandarano, L. Mapelli, M. Marcante, A. Margotti, S. M. Mari, M. Mariani, J. Maricic, M. Marinelli, D. Marras, C. J. Martoff, M. Mascia, A. Messina, P. D. Meyers, R. Milincic, A. Moggi, S. Moioli, S. Monasterio, J. Monroe, A. Monte, M. Morrocchi, W. Mu, V. N. Muratova, S. Murphy, P. Musico, R. Nania, J. Napolitano, A. Navrer Agasson, I. Nikulin, V. Nosov, A. O. Nozdrina, N. N. Nurakhov, A. Oleinik, V. Oleynikov, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, S. Palmas, L. Pandola, E. Pantic, E. Paoloni, G. Paternoster, V. Pavletcov, F. Pazzona, K. Pelczar, L. A. Pellegrini, N. Pelliccia, F. Perotti, R. Perruzza, C. Piemonte, F. Pilo, A. Pocar, D. Portaluppi, S. S. Poudel, D. A. Pugachev, H. Qian, B. Radics, F. Raffaelli, F. Ragusa, K. Randle, M. Razeti, A. Razeto, V. Regazzoni, C. Regenfus, B. Reinhold, A. L. Renshaw, M. Rescigno, Q. Riffard, A. Rivetti, A. Romani, L. Romero, B. Rossi, N. Rossi, A. Rubbia, D. Sablone, P. Salatino, O. Samoylov, W. Sands, M. Sant, R. Santorelli, C. Savarese, E. Scapparone, B. Schlitzer, G. Scioli, E. Sechi, E. Segreto, A. Seifert, D. A. Semenov, S. Serci, A. Shchagin, L. Shekhtman, E. Shemyakina, A. Sheshukov, M. Simeone, P. N. Singh, M. D. Skorokhvatov, O. Smirnov, G. Sobrero, A. Sokolov, A. Sotnikov, C. Stanford, G. B. Suffritti, Y. Suvorov, R. Tartaglia, G. Testera, A. Tonazzo, A. Tosi, P. Trinchese, E. V. Unzhakov, A. Vacca, M. Verducci, T. Viant, F. Villa, A. Vishneva, B. Vogelaar, M. Wada, J. Wahl, S. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, J. Wilhelmi, R. Williams, M. M. Wojcik, S. Wu, X. Xiang, X. Xiao, C. Yang, Z. Ye, F. Zappa, G. Zappalà, C. Zhu, A. Zichichi, G. Zuzel

We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A dedicated setup was used to measure the primary dark noise, the correlated noise, and the gain of the SiPMs at varying temperatures. A custom-made data acquisition system and analysis software were used to precisely characterize these parameters. Read More

2017Apr
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such as JUNO, HyperKamiokande, etc, share the use of a large target mass, and the need of pushing light collection to the edge for maximal calorimetric information. Achieving high light collection implies considerable costs, especially when considering detector masses of several kt. Read More

2016Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

The Jiangmen Underground Neutrino Observatory (JUNO) is a large and high precision liquid scintillator detector under construction in the south of China. With its 20 kt target mass, it aims to achieve an unprecedented 3% energy resolution at 1 MeV. Its main goal is to study the disappearance of reactor antineutrino to determine the neutrino mass ordering, and to precisely measure the mixing parameters $\theta_{12}$, $\Delta m^2_{12}$, and $\Delta m ^2_{ee}$. Read More

2016Aug
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

The disappearance of reactor $\bar{\nu}_e$ observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion $\sigma_\text{rel}$. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of $\bar{\nu}_e$ acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. Read More

2016Jul
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. Read More

2016Jul
Authors: The Daya Bay collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. Read More

2016Jul
Authors: Daya Bay, MINOS Collaborations, :, P. Adamson, F. P. An, I. Anghel, A. Aurisano, A. B. Balantekin, H. R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth G. J. Bock, D. Bogert, D. Cao, G. F. Cao, J. Cao, S. V. Cao, T. J. Carroll, C. M. Castromonte, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, R. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, J. -H. Cheng, Y. P. Chen, Z. K. Cheng, J. J. Cherwinka, S. Childress, M. C. Chu, A. Chukanov, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. P. Cummings, J. de Arcos, S. De Rijck, Z. Y. Deng, A. V. Devan, N. E. Devenish, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. Gill, R. A. Gomes, M. Gonchar, G. H. Gong, H. Gong, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, M. Grassi, K. Grzelak, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, A. Habig, R. W. Hackenburg, S. R. Hahn, R. Han, S. Hans, J. Hartnell, R. Hatcher, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, A. Holin, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, J. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, J. Hylen, G. M. Irwin, Z. Isvan, D. E. Jaffe, P. Jaffke, C. James, K. L. Jen, D. Jensen, S. Jetter, X. L. Ji, X. P. Ji, J. B. Jiao, R. A. Johnson, J. K. de Jong, J. Joshi, T. Kafka, L. Kang, S. M. S. Kasahara, S. H. Kettell, S. Kohn, G. Koizumi, M. Kordosky, M. Kramer, A. Kreymer, 1 K. K. Kwan, M. W. Kwok, T. Kwok, K. Lang, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling J. M. Link, P. J. Litchfield, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, P. Lucas, K. B. Luk, Z. Lv, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, Y. Malyshkin, W. A. Mann, M. L. Marshak, D. A. Martinez Caicedo, N. Mayer, K. T. McDonald, C. McGivern, R. D. McKeown, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, I. Mitchell, M. Mooney, C. D. Moore, L. Mualem, J. Musser, Y. Nakajima, D. Naples, J. Napolitano, D. Naumov, E. Naumova, J. K. Nelson, H. B. Newman, H. Y. Ngai, R. J. Nichol, Z. Ning, A. Nowak, J. O'Connor, J. P. Ochoa-Ricoux, A. Olshevskiy, M. Orchanian, R., R. B. Pahlka, J. Paley, H. -R. Pan, J. Park, R. B. Patterson, S. Patton, G. Pawloski, V. Pec, J. C. Peng, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, L. Pinsky, R. K. Plunkett, N. Poonthottathil, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, X. Qiu, A. Radovic, N. Raper, B. Rebel, J. Ren, C. Rosenfeld, R. Rosero, B. Roskovec, X. C. Ruan, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, S. Moed Sher, A. Sousa, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, R. L. Talaga, W. Tang, D. Taychenachev, J. Thomas, M. A. Thomson, X. Tian A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, K. Treskov, K. V. Tsang, C. E. Tull, G. Tzanakos, J. Urheim, P. Vahle, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, R. C. Webb, A. Weber, H. Y. Wei, L. J. Wen, K. Whisnant, C. White, L. Whitehead L. H. Whitehead, T. Wise, S. G. Wojcicki, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye., Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. ZhanC. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the LSND and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Read More

JUNO is a 20 kt Liquid Scintillator Antineutrino Detector currently under construction in the south of China. This report reviews JUNO's physics programme related to all neutrino sources but reactor antineutrinos, namely neutrinos from supernova burst, solar neutrinos and geoneutrinos. Read More

In this poster, we present the latest measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. A total exposure of $6.9 \times 10^5$ GW$_{\mathrm{th}}$ ton days was achieved in November 2013 after 617 day of data taking. Read More

Drift chambers operated with helium-based gas mixtures represent a common solution for tracking charged particles keeping the material budget in the sensitive volume to a minimum. The drawback of this solution is the worsening of the spatial resolution due to primary ionisation fluctuations, which is a limiting factor for high granularity drift chambers like the MEG II tracker. We report on the measurements performed on three different prototypes of the MEG II drift chamber aimed at determining the achievable single-hit resolution. Read More

2016Mar
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. J. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, T. Konstantin, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This article reports an improved independent measurement of neutrino mixing angle $\theta_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $\beta$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. Read More

The MEG experiment makes use of one of the world's most intense low energy muon beams, in order to search for the lepton flavour violating process $\mu^{+} \rightarrow {\rm e}^{+} \gamma$. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be $P_{\mu} = -1$ by the Standard Model (SM) with massless neutrinos. Read More

2015Aug
Authors: T. Adam, F. An, G. An, Q. An, N. Anfimov, V. Antonelli, G. Baccolo, M. Baldoncini, E. Baussan, M. Bellato, L. Bezrukov, D. Bick, S. Blyth, S. Boarin, A. Brigatti, T. Brugière, R. Brugnera, M. Buizza Avanzini, J. Busto, A. Cabrera, H. Cai, X. Cai, A. Cammi, D. Cao, G. Cao, J. Cao, J. Chang, Y. Chang, M. Chen, P. Chen, Q. Chen, S. Chen, S. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, D. Chiesa, A. Chukanov, M. Clemenza, B. Clerbaux, D. D'Angelo, H. de Kerret, Z. Deng, Z. Deng, X. Ding, Y. Ding, Z. Djurcic, S. Dmitrievsky, M. Dolgareva, D. Dornic, E. Doroshkevich, M. Dracos, O. Drapier, S. Dusini, M. A. Díaz, T. Enqvist, D. Fan, C. Fang, J. Fang, X. Fang, L. Favart, D. Fedoseev, G. Fiorentini, R. Ford, A. Formozov, R. Gaigher, H. Gan, A. Garfagnini, G. Gaudiot, C. Genster, M. Giammarchi, F. Giuliani, M. Gonchar, G. Gong, H. Gong, M. Gonin, Y. Gornushkin, M. Grassi, C. Grewing, V. Gromov, M. Gu, M. Guan, V. Guarino, W. Guo, X. Guo, Y. Guo, M. Göger-Neff, P. Hackspacher, C. Hagner, R. Han, Z. Han, J. Hao, M. He, D. Hellgartner, Y. Heng, D. Hong, S. Hou, Y. Hsiung, B. Hu, J. Hu, S. Hu, T. Hu, W. Hu, H. Huang, X. Huang, X. Huang, L. Huo, W. Huo, A. Ioannisian, D. Ioannisyan, M. Jeitler, K. Jen, S. Jetter, X. Ji, X. Ji, S. Jian, D. Jiang, X. Jiang, C. Jollet, M. Kaiser, B. Kan, L. Kang, M. Karagounis, N. Kazarian, S. Kettell, D. Korablev, A. Krasnoperov, S. Krokhaleva, Z. Krumshteyn, A. Kruth, P. Kuusiniemi, T. Lachenmaier, L. Lei, R. Lei, X. Lei, R. Leitner, F. Lenz, C. Li, F. Li, F. Li, J. Li, N. Li, S. Li, T. Li, W. Li, W. Li, X. Li, X. Li, X. Li, X. Li, Y. Li, Y. Li, Z. Li, H. Liang, H. Liang, J. Liang, M. Licciardi, G. Lin, S. Lin, T. Lin, Y. Lin, I. Lippi, G. Liu, H. Liu, H. Liu, J. Liu, J. Liu, J. Liu, J. Liu, Q. Liu, Q. Liu, S. Liu, S. Liu, Y. Liu, P. Lombardi, Y. Long, S. Lorenz, C. Lu, F. Lu, H. Lu, J. Lu, J. Lu, J. Lu, B. Lubsandorzhiev, S. Lubsandorzhiev, L. Ludhova, F. Luo, S. Luo, Z. Lv, V. Lyashuk, Q. Ma, S. Ma, X. Ma, X. Ma, Y. Malyshkin, F. Mantovani, Y. Mao, S. Mari, D. Mayilyan, W. McDonough, G. Meng, A. Meregaglia, E. Meroni, M. Mezzetto, J. Min, L. Miramonti, M. Montuschi, N. Morozov, T. Mueller, P. Muralidharan, M. Nastasi, D. Naumov, E. Naumova, I. Nemchenok, Z. Ning, H. Nunokawa, L. Oberauer, J. P. Ochoa-Ricoux, A. Olshevskiy, F. Ortica, H. Pan, A. Paoloni, N. Parkalian, S. Parmeggiano, V. Pec, N. Pelliccia, H. Peng, P. Poussot, S. Pozzi, E. Previtali, S. Prummer, F. Qi, M. Qi, S. Qian, X. Qian, H. Qiao, Z. Qin, G. Ranucci, A. Re, B. Ren, J. Ren, T. Rezinko, B. Ricci, M. Robens, A. Romani, B. Roskovec, X. Ruan, X. Ruan, A. Rybnikov, A. Sadovsky, P. Saggese, G. Salamanna, J. Sawatzki, J. Schuler, A. Selyunin, G. Shi, J. Shi, Y. Shi, V. Sinev, C. Sirignano, M. Sisti, O. Smirnov, M. Soiron, A. Stahl, L. Stanco, J. Steinmann, V. Strati, G. Sun, X. Sun, Y. Sun, Y. Sun, D. Taichenachev, J. Tang, A. Tietzsch, I. Tkachev, W. H. Trzaska, Y. Tung, S. van Waasen, C. Volpe, V. Vorobel, L. Votano, C. Wang, C. Wang, C. Wang, G. Wang, H. Wang, M. Wang, R. Wang, S. Wang, W. Wang, W. Wang, Y. Wang, Y. Wang, Y. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, Z. Wang, Z. Wang, W. Wei, Y. Wei, M. Weifels, L. Wen, Y. Wen, C. Wiebusch, S. Wipperfurth, S. C. Wong, B. Wonsak, C. Wu, Q. Wu, Z. Wu, M. Wurm, J. Wurtz, Y. Xi, D. Xia, J. Xia, M. Xiao, Y. Xie, J. Xu, J. Xu, L. Xu, Y. Xu, B. Yan, X. Yan, C. Yang, C. Yang, H. Yang, L. Yang, M. Yang, Y. Yang, Y. Yang, Y. Yang, E. Yanovich, Y. Yao, M. Ye, X. Ye, U. Yegin, F. Yermia, Z. You, B. Yu, C. Yu, C. Yu, G. Yu, Z. Yu, Y. Yuan, Z. Yuan, M. Zanetti, P. Zeng, S. Zeng, T. Zeng, L. Zhan, C. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, K. Zhang, P. Zhang, Q. Zhang, T. Zhang, X. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, Z. Zhang, J. Zhao, M. Zhao, T. Zhao, Y. Zhao, H. Zheng, M. Zheng, X. Zheng, Y. Zheng, W. Zhong, G. Zhou, J. Zhou, L. Zhou, N. Zhou, R. Zhou, S. Zhou, W. Zhou, X. Zhou, Y. Zhou, H. Zhu, K. Zhu, H. Zhuang, L. Zong, J. Zou

The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Read More

2015Aug
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, J. Dove, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, K. Y. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. Read More

2015Aug
Authors: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, D. Cao, G. F. Cao, J. Cao, R. Carr, W. R. Cen, W. T. Chan, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Y. Chen, H. S. Chen, M. J. Chen, Q. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, S. Chidzik, K. Chow, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, L. Dong, J. Dove, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, M. Grassi, L. S. Greenler, W. Q. Gu, M. Y. Guan, R. P. Guo, X. H. Guo, R. W. Hackenburg, R. L. Hahn, R. Han, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, A. Higuera, P. Hinrichs, T. H. Ho, M. Hoff, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Z. Huang, H. X. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, J. Joseph, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, C. Li, D. J. Li, F. Li, G. S. Li, J. Li, N. Y. Li, Q. J. Li, S. F. Li, S. C. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Y. F. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. X. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. Liu, S. S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, J. S. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, D. Mohapatra, J. Monari Kebwaro, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, A. Pagac, H. -R. Pan, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, W. R. Sands III, B. Seilhan, B. B. Shao, K. Shih, W. Y. Song, H. Steiner, P. Stoler, M. Stuart, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, W. Tang, X. Tang, D. Taychenachev, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, W. W. Wang, X. T. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, S. C. F. Wong, E. Worcester, F. F. Wu, Q. Wu, D. M. Xia, J. K. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Y. Xu, J. L. Xu, J. Xu, W. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, G. Y. Yu, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, F. H. Zhang, H. H. Zhang, J. W. Zhang, K. Zhang, Q. X. Zhang, Q. M. Zhang, S. H. Zhang, X. T. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, Z. Y. Zhou, H. L. Zhuang, S. Zimmerman, J. H. Zou

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Read More

2015Jul
Authors: Fengpeng An, Guangpeng An, Qi An, Vito Antonelli, Eric Baussan, John Beacom, Leonid Bezrukov, Simon Blyth, Riccardo Brugnera, Margherita Buizza Avanzini, Jose Busto, Anatael Cabrera, Hao Cai, Xiao Cai, Antonio Cammi, Guofu Cao, Jun Cao, Yun Chang, Shaomin Chen, Shenjian Chen, Yixue Chen, Davide Chiesa, Massimiliano Clemenza, Barbara Clerbaux, Janet Conrad, Davide D'Angelo, Herve De Kerret, Zhi Deng, Ziyan Deng, Yayun Ding, Zelimir Djurcic, Damien Dornic, Marcos Dracos, Olivier Drapier, Stefano Dusini, Stephen Dye, Timo Enqvist, Donghua Fan, Jian Fang, Laurent Favart, Richard Ford, Marianne Goger-Neff, Haonan Gan, Alberto Garfagnini, Marco Giammarchi, Maxim Gonchar, Guanghua Gong, Hui Gong, Michel Gonin, Marco Grassi, Christian Grewing, Mengyun Guan, Vic Guarino, Gang Guo, Wanlei Guo, Xin-Heng Guo, Caren Hagner, Ran Han, Miao He, Yuekun Heng, Yee Hsiung, Jun Hu, Shouyang Hu, Tao Hu, Hanxiong Huang, Xingtao Huang, Lei Huo, Ara Ioannisian, Manfred Jeitler, Xiangdong Ji, Xiaoshan Jiang, Cecile Jollet, Li Kang, Michael Karagounis, Narine Kazarian, Zinovy Krumshteyn, Andre Kruth, Pasi Kuusiniemi, Tobias Lachenmaier, Rupert Leitner, Chao Li, Jiaxing Li, Weidong Li, Weiguo Li, Xiaomei Li, Xiaonan Li, Yi Li, Yufeng Li, Zhi-Bing Li, Hao Liang, Guey-Lin Lin, Tao Lin, Yen-Hsun Lin, Jiajie Ling, Ivano Lippi, Dawei Liu, Hongbang Liu, Hu Liu, Jianglai Liu, Jianli Liu, Jinchang Liu, Qian Liu, Shubin Liu, Shulin Liu, Paolo Lombardi, Yongbing Long, Haoqi Lu, Jiashu Lu, Jingbin Lu, Junguang Lu, Bayarto Lubsandorzhiev, Livia Ludhova, Shu Luo, Vladimir Lyashuk, Randolph Mollenberg, Xubo Ma, Fabio Mantovani, Yajun Mao, Stefano M. Mari, William F. McDonough, Guang Meng, Anselmo Meregaglia, Emanuela Meroni, Mauro Mezzetto, Lino Miramonti, Thomas Mueller, Dmitry Naumov, Lothar Oberauer, Juan Pedro Ochoa-Ricoux, Alexander Olshevskiy, Fausto Ortica, Alessandro Paoloni, Haiping Peng, Jen-Chieh Peng, Ezio Previtali, Ming Qi, Sen Qian, Xin Qian, Yongzhong Qian, Zhonghua Qin, Georg Raffelt, Gioacchino Ranucci, Barbara Ricci, Markus Robens, Aldo Romani, Xiangdong Ruan, Xichao Ruan, Giuseppe Salamanna, Mike Shaevitz, Valery Sinev, Chiara Sirignano, Monica Sisti, Oleg Smirnov, Michael Soiron, Achim Stahl, Luca Stanco, Jochen Steinmann, Xilei Sun, Yongjie Sun, Dmitriy Taichenachev, Jian Tang, Igor Tkachev, Wladyslaw Trzaska, Stefan van Waasen, Cristina Volpe, Vit Vorobel, Lucia Votano, Chung-Hsiang Wang, Guoli Wang, Hao Wang, Meng Wang, Ruiguang Wang, Siguang Wang, Wei Wang, Yi Wang, Yi Wang, Yifang Wang, Zhe Wang, Zheng Wang, Zhigang Wang, Zhimin Wang, Wei Wei, Liangjian Wen, Christopher Wiebusch, Bjorn Wonsak, Qun Wu, Claudia-Elisabeth Wulz, Michael Wurm, Yufei Xi, Dongmei Xia, Yuguang Xie, Zhi-zhong Xing, Jilei Xu, Baojun Yan, Changgen Yang, Chaowen Yang, Guang Yang, Lei Yang, Yifan Yang, Yu Yao, Ugur Yegin, Frederic Yermia, Zhengyun You, Boxiang Yu, Chunxu Yu, Zeyuan Yu, Sandra Zavatarelli, Liang Zhan, Chao Zhang, Hong-Hao Zhang, Jiawen Zhang, Jingbo Zhang, Qingmin Zhang, Yu-Mei Zhang, Zhenyu Zhang, Zhenghua Zhao, Yangheng Zheng, Weili Zhong, Guorong Zhou, Jing Zhou, Li Zhou, Rong Zhou, Shun Zhou, Wenxiong Zhou, Xiang Zhou, Yeling Zhou, Yufeng Zhou, Jiaheng Zou

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Read More

At upcoming medium baseline reactor neutrino experiments the spallation 9Li background will be somewhat larger than the inverse beta decay reactor neutrino signal. We use new FLUKA simulations of spallation backgrounds to optimize a class of veto strategies and find that surprisingly the optimal veto for the mass hierarchy determination has a rejection efficiency below 90%. The unrejected background has only a modest effect on the physics goals. Read More

2015May
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, H. Themann, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6. Read More

The recently discovered 5 MeV bump highlights that the uncertainty in the reactor neutrino spectrum is far greater than some theoretical estimates. Medium baseline reactor neutrino experiments will deliver by far the most precise ever measurements of theta12. However, as a result of the bump, such a determination of theta12 using the theoretical spectrum would yield a value of sin^2(2theta12) which is more than 1% higher than the true value. Read More

2014Aug
Authors: M. Feroci1, J. W. den Herder2, E. Bozzo3, D. Barret4, S. Brandt5, M. Hernanz6, M. van der Klis7, M. Pohl8, A. Santangelo9, L. Stella10, A. Watts11, J. Wilms12, S. Zane13, M. Ahangarianabhari14, C. Albertus15, M. Alford16, A. Alpar17, D. Altamirano18, L. Alvarez19, L. Amati20, C. Amoros21, N. Andersson22, A. Antonelli23, A. Argan24, R. Artigue25, B. Artigues26, J. -L. Atteia27, P. Azzarello28, P. Bakala29, G. Baldazzi30, S. Balman31, M. Barbera32, C. van Baren33, S. Bhattacharyya34, A. Baykal35, T. Belloni36, F. Bernardini37, G. Bertuccio38, S. Bianchi39, A. Bianchini40, P. Binko41, P. Blay42, F. Bocchino43, P. Bodin44, I. Bombaci45, J. -M. Bonnet Bidaud46, S. Boutloukos47, L. Bradley48, J. Braga49, E. Brown50, N. Bucciantini51, L. Burderi52, M. Burgay53, M. Bursa54, C. Budtz-Jørgensen55, E. Cackett56, F. R. Cadoux57, P. Cais58, G. A. Caliandro59, R. Campana60, S. Campana61, F. Capitanio62, J. Casares63, P. Casella64, A. J. Castro-Tirado65, E. Cavazzuti66, P. Cerda-Duran67, D. Chakrabarty68, F. Château69, J. Chenevez70, J. Coker71, R. Cole72, A. Collura73, R. Cornelisse74, T. Courvoisier75, A. Cros76, A. Cumming77, G. Cusumano78, A. D'Aì79, V. D'Elia80, E. Del Monte81, A. De Luca82, D. De Martino83, J. P. C. Dercksen84, M. De Pasquale85, A. De Rosa86, M. Del Santo87, S. Di Cosimo88, S. Diebold89, T. Di Salvo90, I. Donnarumma91, A. Drago92, M. Durant93, D. Emmanoulopoulos94, M. H. Erkut95, P. Esposito96, Y. Evangelista97, A. Fabian98, M. Falanga99, Y. Favre100, C. Feldman101, V. Ferrari102, C. Ferrigno103, M. Finger104, M. H. Finger105, G. W. Fraser106, M. Frericks107, F. Fuschino108, M. Gabler109, D. K. Galloway110, J. L. Galvez Sanchez111, E. Garcia-Berro112, B. Gendre113, S. Gezari114, A. B. Giles115, M. Gilfanov116, P. Giommi117, G. Giovannini118, M. Giroletti119, E. Gogus120, A. Goldwurm121, K. Goluchová122, D. Götz123, C. Gouiffes124, M. Grassi125, P. Groot126, M. Gschwender127, L. Gualtieri128, C. Guidorzi129, L. Guy130, D. Haas131, P. Haensel132, M. Hailey133, F. Hansen134, D. H. Hartmann135, C. A. Haswell136, K. Hebeler137, A. Heger138, W. Hermsen139, J. Homan140, A. Hornstrup141, R. Hudec142, J. Huovelin143, A. Ingram144, J. J. M. in't Zand145, G. Israel146, K. Iwasawa147, L. Izzo148, H. M. Jacobs149, F. Jetter150, T. Johannsen151, H. M. Jacobs152, P. Jonker153, J. Josè154, P. Kaaret155, G. Kanbach156, V. Karas157, D. Karelin158, D. Kataria159, L. Keek160, T. Kennedy161, D. Klochkov162, W. Kluzniak163, K. Kokkotas164, S. Korpela165, C. Kouveliotou166, I. Kreykenbohm167, L. M. Kuiper168, I. Kuvvetli169, C. Labanti170, D. Lai171, F. K. Lamb172, P. P. Laubert173, F. Lebrun174, D. Lin175, D. Linder176, G. Lodato177, F. Longo178, N. Lund179, T. J. Maccarone180, D. Macera181, S. Maestre182, S. Mahmoodifar183, D. Maier184, P. Malcovati185, I. Mandel186, V. Mangano187, A. Manousakis188, M. Marisaldi189, A. Markowitz190, A. Martindale191, G. Matt192, I. M. McHardy193, A. Melatos194, M. Mendez195, S. Mereghetti196, M. Michalska197, S. Migliari198, R. Mignani199, M. C. Miller200, J. M. Miller201, T. Mineo202, G. Miniutti203, S. Morsink204, C. Motch205, S. Motta206, M. Mouchet207, G. Mouret208, J. Mulačová209, F. Muleri210, T. Muñoz-Darias211, I. Negueruela212, J. Neilsen213, A. J. Norton214, M. Nowak215, P. O'Brien216, P. E. H. Olsen217, M. Orienti218, M. Orio219, M. Orlandini220, P. Orleanski221, J. P. Osborne222, R. Osten223, F. Ozel224, L. Pacciani225, M. Paolillo226, A. Papitto227, J. M. Paredes228, A. Patruno229, B. Paul230, E. Perinati231, A. Pellizzoni232, A. V. Penacchioni233, M. A. Perez234, V. Petracek235, C. Pittori236, J. Pons237, J. Portell238, A. Possenti239, J. Poutanen240, M. Prakash241, P. Le Provost242, D. Psaltis243, D. Rambaud244, P. Ramon245, G. Ramsay246, M. Rapisarda247, A. Rachevski248, I. Rashevskaya249, P. S. Ray250, N. Rea251, S. Reddy252, P. Reig253, M. Reina Aranda254, R. Remillard255, C. Reynolds256, L. Rezzolla257, M. Ribo258, R. de la Rie259, A. Riggio260, A. Rios261, P. Rodríguez- Gil262, J. Rodriguez263, R. Rohlfs264, P. Romano265, E. M. R. Rossi266, A. Rozanska267, A. Rousseau268, F. Ryde269, L. Sabau-Graziati270, G. Sala271, R. Salvaterra272, A. Sanna273, J. Sandberg274, S. Scaringi275, S. Schanne276, J. Schee277, C. Schmid278, S. Shore279, R. Schneider280, A. Schwenk281, A. D. Schwope282, J. -Y. Seyler283, A. Shearer284, A. Smith285, D. M. Smith286, P. J. Smith287, V. Sochora288, P. Soffitta289, P. Soleri290, A. Spencer291, B. Stappers292, A. W. Steiner293, N. Stergioulas294, G. Stratta295, T. E. Strohmayer296, Z. Stuchlik297, S. Suchy298, V. Sulemainov299, T. Takahashi300, F. Tamburini301, T. Tauris302, C. Tenzer303, L. Tolos304, F. Tombesi305, J. Tomsick306, G. Torok307, J. M. Torrejon308, D. F. Torres309, A. Tramacere310, A. Trois311, R. Turolla312, S. Turriziani313, P. Uter314, P. Uttley315, A. Vacchi316, P. Varniere317, S. Vaughan318, S. Vercellone319, V. Vrba320, D. Walton321, S. Watanabe322, R. Wawrzaszek323, N. Webb324, N. Weinberg325, H. Wende326, P. Wheatley327, R. Wijers328, R. Wijnands329, M. Wille330, C. A. Wilson-Hodge331, B. Winter332, K. Wood333, G. Zampa334, N. Zampa335, L. Zampieri336, L. Zdunik337, A. Zdziarski338, B. Zhang339, F. Zwart340, M. Ayre341, T. Boenke342, C. Corral van Damme343, E. Kuulkers344, D. Lumb345
Affiliations: 11,1b, 2SRON, The Netherlands, 3ISDC, Geneve University, Switzerland, 4IRAP, Toulouse, France, 5National Space Institute, Lyngby, Denmark, 6IEEC-CSIC-UPC-UB, Barcelona, Spain, 7Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 8DPNC, Geneve University, Switzerland, 9IAAT Tuebingen, Germany, 10INAF-OA Rome, Italy, 11Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 12University of Erlangen-Nuremberg, Germany, 13MSSL, Surrey, United Kingdom, 14Politecnico Milano, Italy, 15Universidad de Granada, Spain, 16Washington University, United States, 17Sabanci University, Istanbul, Turkey, 18Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 19IEEC-CSIC-UPC-UB, Barcelona, Spain, 20INAF-IASF-Bologna, Italy, 21IRAP, Toulouse, France, 22Faculty of Physical and Applied Sciences, University of Southampton, United Kingdom, 23ASDC, Rome, Italy, 24IAPS-INAF, Rome, Italy, 25IRAP, Toulouse, France, 26IEEC-CSIC-UPC-UB, Barcelona, Spain, 27IRAP, Toulouse, France, 28ISDC, Geneve University, Switzerland, 29Silesian University in Opava, Czech Republic, 30University of Bologna, Italy, 31Middle East Technical University, Ankara, Turkey, 32Dipartimento di Chimica e Fisica, Palermo University, Italy, 33SRON, The Netherlands, 34Tata Institute of Fundamental Research, Mumbai, India, 35Middle East Technical University, Ankara, Turkey, 36INAF-OA Brera, Italy, 37Wayne State University, Detroit, United States, 38Politecnico Milano, Italy, 39University of Rome III, Italy, 40Dept. of Physics and Astronomy University of Padua, Italy, 41ISDC, Geneve University, Switzerland, 42University of Valencia, Spain, 43INAF-OA Padova, Padova, Italy, 44CNES, Toulouse, France, 45University of Pisa, Italy, 46CEA Saclay, DSM/IRFU/SAp, France, 47IAAT Tuebingen, Germany, 48MSSL, Surrey, United Kingdom, 49INPE, São José dos Campos, Brazil, 50Michigan state University, United States, 51Arcetri Observatory, INAF, Firenze, Italy, 52Cagliari University, Italy, 53INAF-OA Cagliari, Italy, 54Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 55National Space Institute, Lyngby, Denmark, 56Wayne State University, Detroit, United States, 57DPNC, Geneve University, Switzerland, 58Laboratoire d'Astrophysique de Bordeaux, France, 59IEEC-CSIC-UPC-UB, Barcelona, Spain, 601,1b, 61INAF-OA Brera, Italy, 62IAPS-INAF, Rome, Italy, 63Instituto de Astrofisica de Canarias, Tenerife, Spain, 64INAF-OA Rome, Italy, 65Instituto Astrofisica de Andalucia, Granada, Spain, 66ASDC, Rome, Italy, 67University of Valencia, Spain, 68MIT, Cambridge, United States, 69CEA Saclay, DSM/IRFU/SAp, France, 70National Space Institute, Lyngby, Denmark, 71MSSL, Surrey, United Kingdom, 72MSSL, Surrey, United Kingdom, 73INAF- Osservatorio Astronomico di Palermo, Italy, 74Instituto de Astrofisica de Canarias, Tenerife, Spain, 75ISDC, Geneve University, Switzerland, 76IRAP, Toulouse, France, 77INAF-OA Capodimonte, Napoli, Italy, 78INAF IFC, Palermo, Italy, 79Dipartimento di Chimica e Fisica, Palermo University, Italy, 80ASDC, Rome, Italy, 811,1b, 82INAF-IASF-Milano, Italy, 83INAF-OA Capodimonte, Napoli, Italy, 84SRON, The Netherlands, 85MSSL, Surrey, United Kingdom, 86IAPS-INAF, Rome, Italy, 87IAPS-INAF, Rome, Italy, 88IAPS-INAF, Rome, Italy, 89IAAT Tuebingen, Germany, 90Dipartimento di Chimica e Fisica, Palermo University, Italy, 91IAPS-INAF, Rome, Italy, 92Ferrara University, Ferrara, Italy, 93Department of Medical Biophysics, University of Toronto, Canada, 94School of Physics and Astronomy, University of Southampton, United Kingdom, 95Istanbul Kültür University, Turkey, 96INAF-IASF-Milano, Italy, 971,1b, 98Cambridge University, Cambridge, United Kingdom, 99ISSI Bern, Switzerland, 100DPNC, Geneve University, Switzerland, 101Leicester University, United Kingdom, 102Sapienza University, Rome, Italy, 103ISDC, Geneve University, Switzerland, 104Charles University in Prague, Czech Republic, 105Universities Space Research Association, Huntsville, United States, 106Leicester University, United Kingdom, 107SRON, The Netherlands, 108INAF-IASF-Bologna, Italy, 109University of Valencia, Spain, 110Monash Centre for Astrophysics, School of Physics and School of Mathematical Sciences, Monash University, Australia, 111IEEC-CSIC-UPC-UB, Barcelona, Spain, 112IEEC-CSIC-UPC-UB, Barcelona, Spain, 113ASDC, Rome, Italy, 114University of Maryland, United States, 115University of Tasmania, Australia, 116MPA Garching, Germany, 117ASDC, Rome, Italy, 118INAF-IRA-Bologna, Italy, 119INAF-IRA-Bologna, Italy, 120Sabanci University, Istanbul, Turkey, 121APC, Université Paris Diderot, CEA/Irfu, Observatoire de Paris, France, 122Silesian University in Opava, Czech Republic, 123CEA Saclay, DSM/IRFU/SAp, France, 124CEA Saclay, DSM/IRFU/SAp, France, 125Pavia University, Italy, 126Clemson University, United States, 127IAAT Tuebingen, Germany, 128Sapienza University, Rome, Italy, 129Ferrara University, Ferrara, Italy, 130ISDC, Geneve University, Switzerland, 131SRON, The Netherlands, 132Copernicus Astronomical Center, Warsaw, Poland, 133MSSL, Surrey, United Kingdom, 134National Space Institute, Lyngby, Denmark, 135Clemson University, United States, 136Open University, United Kingdom, 137Institut für Kernphysik, Technische Universität Darmstadt and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, 138Monash Centre for Astrophysics, School of Physics and School of Mathematical Sciences, Monash University, Australia, 139SRON, The Netherlands, 140MIT, Cambridge, United States, 141National Space Institute, Lyngby, Denmark, 142Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 143University of Helsinki, Finland, 144Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 145SRON, The Netherlands, 146INAF-OA Rome, Italy, 147DAM and ICC-UB, Universitat de Barcelona, Spain, 148Sapienza University and ICRA, Rome, Italy, 149SRON, The Netherlands, 150IAAT Tuebingen, Germany, 151Perimeter Institute for Theoretical Physics, Waterloo, Canada, 152SRON, The Netherlands, 153SRON, The Netherlands, 154Technical University of Catalonia, Barcelona, Spain, 155Michigan state University, United States, 156Max-Planck-Institut fuer extraterrestrische Physik, Garching, Germany, 157Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 158IEEC-CSIC-UPC-UB, Barcelona, Spain, 159MSSL, Surrey, United Kingdom, 160Michigan state University, United States, 161MSSL, Surrey, United Kingdom, 162IAAT Tuebingen, Germany, 163Copernicus Astronomical Center, Warsaw, Poland, 164IAAT Tuebingen, Germany, 165University of Helsinki, Finland, 166NASA/Marshall Space Flight Center, United States, 167University of Erlangen-Nuremberg, Germany, 168SRON, The Netherlands, 169National Space Institute, Lyngby, Denmark, 170INAF-IASF-Bologna, Italy, 171Cornell University, Ithaca, United States, 172University of Illinois, United States, 173SRON, The Netherlands, 174APC, Université Paris Diderot, CEA/Irfu, Observatoire de Paris, France, 175IRAP, Toulouse, France, 176MSSL, Surrey, United Kingdom, 177Dipartimento di Fisica, Università degli Studi di Milano, Italy, 178University of Trieste, Italy, 179National Space Institute, Lyngby, Denmark, 180Texas Tech. University, United States, 181Politecnico Milano, Italy, 182IRAP, Toulouse, France, 183University of Maryland, United States, 184IAAT Tuebingen, Germany, 185Pavia University, Italy, 186School of Physics and Astronomy, University of Birmingham, United Kingdom, 187The Pennsylvania State University, United States, 188Copernicus Astronomical Center, Warsaw, Poland, 189INAF-IASF-Bologna, Italy, 190University of California, San Diego, United States, 191Leicester University, United Kingdom, 192University of Rome III, Italy, 193School of Physics and Astronomy, University of Southampton, United Kingdom, 194University of Melbourne, Australia, 195Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 196INAF-IASF-Milano, Italy, 197Space Research Centre, Warsaw, Poland, 198DAM and ICC-UB, Universitat de Barcelona, Spain, 199INAF-IASF-Milano, Italy, 200University of Maryland, United States, 201Michigan state University, United States, 202INAF IFC, Palermo, Italy, 203Centro de Astrobiologia, 204University of Alberta, Canada, 205Observatoire Astronomique de Strasbourg, France, 206INAF-OA Brera, Italy, 207Université Paris Diderot France, 208IRAP, Toulouse, France, 209National Space Institute, Lyngby, Denmark, 2101,1b, 211Oxford University, United Kingdom, 212University of Alicante, Spain, 213MIT, Cambridge, United States, 214Open University, United Kingdom, 215MIT, Cambridge, United States, 216Leicester University, United Kingdom, 217National Space Institute, Lyngby, Denmark, 218INAF-IRA-Bologna, Italy, 219INAF-OA Padova, Padova, Italy, 220INAF-IASF-Bologna, Italy, 221Space Research Centre, Warsaw, Poland, 222Leicester University, United Kingdom, 223Space Telescope Institute, United States, 224University of Arizona, United States, 2251,1b, 226Università di Napoli Fedelico II, Italy, 227IEEC-CSIC-UPC-UB, Barcelona, Spain, 228DAM and ICC-UB, Universitat de Barcelona, Spain, 229Leiden Observatory, The Netherlands, 230Raman Research Institute, India, 231IAAT Tuebingen, Germany, 232INAF-OA Cagliari, Italy, 233Sapienza University and ICRA, Rome, Italy, 234Facultad de Ciencias-Trilingüe University of Salamanca, Spain, 235Czech Technical University in Prague, Czech Republic, 236ASDC, Rome, Italy, 237University of Alicante, Spain, 238IEEC-CSIC-UPC-UB, Barcelona, Spain, 239INAF-OA Cagliari, Italy, 240Tuorla Observatory, University of Turku, Finland, 241Ohio University, United States, 242CEA Saclay, DSM/IRFU/SAp, France, 243University of Arizona, United States, 244IRAP, Toulouse, France, 245IRAP, Toulouse, France, 246Armagh Observatory, United Kingdom, 2471,1b, 248INFN, Trieste, Italy, 249INFN, Trieste, Italy, 250NRL, Washington, United States, 251IEEC-CSIC-UPC-UB, Barcelona, Spain, 252Institute for Nuclear Theory, University of Washington, United States, 253Foundation for Research and Technology, Heraklion, Greece, 254National Institute of Aerospace Technology, 255MIT, Cambridge, United States, 256University of Maryland, United States, 257Max Planck Institute for Gravitational Physics, Germany, 258DAM and ICC-UB, Universitat de Barcelona, Spain, 259SRON, The Netherlands, 260INAF-OA Cagliari, Italy, 261University of Surrey, United Kingdom, 262Instituto de Astrofisica de Canarias, Tenerife, Spain, 263CEA Saclay, DSM/IRFU/SAp, France, 264ISDC, Geneve University, Switzerland, 265INAF IFC, Palermo, Italy, 266Leiden Observatory, The Netherlands, 267Copernicus Astronomical Center, Warsaw, Poland, 268MSSL, Surrey, United Kingdom, 269KTH Royal Institute of Technology, Stockholm, Sweden, 270National Institute of Aerospace Technology, 271IEEC-CSIC-UPC-UB, Barcelona, Spain, 272INAF-IASF-Milano, Italy, 273Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 274Jorgen Sandberg Consulting, Denmark, 275Institute for Astronomy K.U. Leuven, Leuven, Belgium, 276CEA Saclay, DSM/IRFU/SAp, France, 277Silesian University in Opava, Czech Republic, 278University of Erlangen-Nuremberg, Germany, 279University of Pisa, Italy, 280INAF-OA Rome, Italy, 281Institut für Kernphysik, Technische Universität Darmstadt and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, 282Leibniz-Institut fuer Astrophysik Potsdam, Germany, 283CNES, Toulouse, France, 284National University of Ireland, Ireland, 285MSSL, Surrey, United Kingdom, 286University of California, United States, 287MSSL, Surrey, United Kingdom, 288Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 289IAPS-INAF, Rome, Italy, 290Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 291MSSL, Surrey, United Kingdom, 292University of Manchester, United Kingdom, 293Institute for Nuclear Theory, University of Washington, United States, 294Aristotle University of Thessaloniki, Greece, 295ASDC, Rome, Italy, 296Goddard Space Flight Center, Greenbelt, United States, 297Silesian University in Opava, Czech Republic, 298IAAT Tuebingen, Germany, 299IAAT Tuebingen, Germany, 300ISAS, Kanagawa, Japan, 301Dept. of Physics and Astronomy University of Padua, Italy, 302Argelander-Institut für Astronomie, Bonn, Germany, 303IAAT Tuebingen, Germany, 304IEEC-CSIC-UPC-UB, Barcelona, Spain, 305University of Maryland, United States, 306University of California, Berkeley, Space Sciences Laboratory, United States, 307Silesian University in Opava, Czech Republic, 308University of Alicante, Spain, 309ICREA, Barcelona, Spain, 310ISDC, Geneve University, Switzerland, 311IAPS-INAF, Rome, Italy, 312Dept. of Physics and Astronomy University of Padua, Italy, 313University of Rome Tor Vergata, Italy, 314IAAT Tuebingen, Germany, 315Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 316INFN, Trieste, Italy, 317APC, Université Paris Diderot, CEA/Irfu, Observatoire de Paris, France, 318Leicester University, United Kingdom, 319INAF IFC, Palermo, Italy, 320Physical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 321MSSL, Surrey, United Kingdom, 322ISAS, Kanagawa, Japan, 323Space Research Centre, Warsaw, Poland, 324IRAP, Toulouse, France, 325MIT, Cambridge, United States, 326IAAT Tuebingen, Germany, 327University of Warwick, United Kingdom, 328Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 329Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 330University of Erlangen-Nuremberg, Germany, 331NASA/Marshall Space Flight Center, Huntsville, United States, 332MSSL, Surrey, United Kingdom, 333NRL, Washington, United States, 334INFN, Trieste, Italy, 335INFN, Trieste, Italy, 336INAF-OA Padova, Padova, Italy, 337Copernicus Astronomical Center, Warsaw, Poland, 338Copernicus Astronomical Center, Warsaw, Poland, 339University of Nevada, Las Vegas, United States, 340SRON, The Netherlands, 341European Space Agency, ESTEC, The Netherlands, 342European Space Agency, ESTEC, The Netherlands, 343European Space Agency, ESTEC, The Netherlands, 344European Space Astronomy Centre, Madrid, Spain, 345European Space Agency, ESTEC, The Netherlands

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). Read More

2014Aug
Affiliations: 1Mullard Space Science Laboratory, UCL, United Kingdom, 2Mullard Space Science Laboratory, UCL, United Kingdom, 3Mullard Space Science Laboratory, UCL, United Kingdom, 4INAF-IAPS-Rome, Italy, 5SRON, The Netherlands, 6Politecnico di Milano, Italy, 7INAF HQ, Rome, Italy, 8ISDC, University of Geneva, Switzerland, 9University of Bologna, Italy, 10Dipartimento di Fisica e Chimica, Palermo University, Italy, 11IRAP, Toulouse, France, 12Politecnico di Milano, Italy, 13Centre National d'Etudes Spatiales, Centre Spatial de Toulouse, France, 14ISDC, University of Geneva, Switzerland, 15Mullard Space Science Laboratory, UCL, United Kingdom, 16DPNC, Geneva University, Switzerland, 17Laboratoire d'Astrophysique de Bordeaux, France, 18INAF/IASF Bologna, Italy, 19Mullard Space Science Laboratory, UCL, United Kingdom, 20IRAP, Toulouse, France, 21INAF-IAPS-Rome, Italy, 22INAF-IAPS-Rome, Italy, 23INAF-IAPS-Rome, Italy, 24INAF-IAPS-Rome, Italy, 25INAF-IAPS-Rome, Italy, 26DPNC, Geneva University, Switzerland, 27Space Research Centre, Department of Physics and Astronomy, University of Leicester, United Kingdom, 28Space Research Centre, Department of Physics and Astronomy, University of Leicester, United Kingdom, 29INAF/IASF Bologna, Italy, 30University of Pavia, Italy, 31Mullard Space Science Laboratory, UCL, United Kingdom, 32Czech Technical University in Prague, Faculty of electrical Engineering and Astronomical Institute, Academy of Science of the Czech Republic, Czech Republic, 33INAF/IASF Bologna, Italy, 34Politecnico di Milano, Italy, 35University of Pavia, Italy, 36INAF/IASF Bologna, Italy, 37Space Research Centre, Department of Physics and Astronomy, University of Leicester, United Kingdom, 38INAF/IASF Palermo, Italy, 39INAF-IAPS-Rome, Italy, 40MIT, Cambridge, United States, 41INAF/IASF Bologna, Italy, 42INAF-IAPS-Rome, Italy, 43IAAT, Tuebingen, Germany, 44Czech Technical University in Prague, Czech Republic, 45DPNC, Geneva University, Switzerland, 46INFN, Sezione di Trieste, Italy, 47Mullard Space Science Laboratory, UCL, United Kingdom, 48IAAT, Tuebingen, Germany, 49Laboratoire d'Astrophysique de Bordeaux, France, 50Dr Remeis-Observatory & ECAP, University of Erlangen-Nuremberg, Germany, 51INAF-IAPS-Rome, Italy, 52IAAT, Tuebingen, Germany, 53IAAT, Tuebingen, Germany, 54Astronomical Institute Anton Pannokoek, University of Amsterdam, The Netherlands, 55INFN, Sezione di Trieste, Italy, 56INFN, Sezione di Trieste, Italy, 57INFN, Sezione di Trieste, Italy, 58Dr Remeis-Observatory & ECAP, University of Erlangen-Nuremberg, Germany, 59Mullard Space Science Laboratory, UCL, United Kingdom

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. Read More

2014Jul
Authors: F. P. An1, A. B. Balantekin2, H. R. Band3, W. Beriguete4, M. Bishai5, S. Blyth6, I. Butorov7, G. F. Cao8, J. Cao9, Y. L. Chan10, J. F. Chang11, L. C. Chang12, Y. Chang13, C. Chasman14, H. Chen15, Q. Y. Chen16, S. M. Chen17, X. Chen18, X. Chen19, Y. X. Chen20, Y. Chen21, Y. P. Cheng22, J. J. Cherwinka23, M. C. Chu24, J. P. Cummings25, J. de Arcos26, Z. Y. Deng27, Y. Y. Ding28, M. V. Diwan29, E. Draeger30, X. F. Du31, D. A. Dwyer32, W. R. Edwards33, S. R. Ely34, J. Y. Fu35, L. Q. Ge36, R. Gill37, M. Gonchar38, G. H. Gong39, H. Gong40, M. Grassi41, W. Q. Gu42, M. Y. Guan43, X. H. Guo44, R. W. Hackenburg45, G. H. Han46, S. Hans47, M. He48, K. M. Heeger49, Y. K. Heng50, P. Hinrichs51, Y. K. Hor52, Y. B. Hsiung53, B. Z. Hu54, L. M. Hu55, L. J. Hu56, T. Hu57, W. Hu58, E. C. Huang59, H. Huang60, X. T. Huang61, P. Huber62, G. Hussain63, Z. Isvan64, D. E. Jaffe65, P. Jaffke66, K. L. Jen67, S. Jetter68, X. P. Ji69, X. L. Ji70, H. J. Jiang71, J. B. Jiao72, R. A. Johnson73, L. Kang74, S. H. Kettell75, M. Kramer76, K. K. Kwan77, M. W. Kwok78, T. Kwok79, W. C. Lai80, K. Lau81, L. Lebanowski82, J. Lee83, R. T. Lei84, R. Leitner85, A. Leung86, J. K. C. Leung87, C. A. Lewis88, D. J. Li89, F. Li90, G. S. Li91, Q. J. Li92, W. D. Li93, X. N. Li94, X. Q. Li95, Y. F. Li96, Z. B. Li97, H. Liang98, C. J. Lin99, G. L. Lin100, P. Y. Lin101, S. K. Lin102, Y. C. Lin103, J. J. Ling104, J. M. Link105, L. Littenberg106, B. R. Littlejohn107, D. W. Liu108, H. Liu109, J. L. Liu110, J. C. Liu111, S. S. Liu112, Y. B. Liu113, C. Lu114, H. Q. Lu115, K. B. Luk116, Q. M. Ma117, X. Y. Ma118, X. B. Ma119, Y. Q. Ma120, K. T. McDonald121, M. C. McFarlane122, R. D. McKeown123, Y. Meng124, I. Mitchell125, J. Monari Kebwaro126, Y. Nakajima127, J. Napolitano128, D. Naumov129, E. Naumova130, I. Nemchenok131, H. Y. Ngai132, Z. Ning133, J. P. Ochoa-Ricoux134, A. Olshevski135, S. Patton136, V. Pec137, J. C. Peng138, L. E. Piilonen139, L. Pinsky140, C. S. J. Pun141, F. Z. Qi142, M. Qi143, X. Qian144, N. Raper145, B. Ren146, J. Ren147, R. Rosero148, B. Roskovec149, X. C. Ruan150, B. B. Shao151, H. Steiner152, G. X. Sun153, J. L. Sun154, Y. H. Tam155, X. Tang156, H. Themann157, K. V. Tsang158, R. H. M. Tsang159, C. E. Tull160, Y. C. Tung161, B. Viren162, V. Vorobel163, C. H. Wang164, L. S. Wang165, L. Y. Wang166, M. Wang167, N. Y. Wang168, R. G. Wang169, W. Wang170, W. W. Wang171, X. Wang172, Y. F. Wang173, Z. Wang174, Z. Wang175, Z. M. Wang176, D. M. Webber177, H. Y. Wei178, Y. D. Wei179, L. J. Wen180, K. Whisnant181, C. G. White182, L. Whitehead183, T. Wise184, H. L. H. Wong185, S. C. F. Wong186, E. Worcester187, Q. Wu188, D. M. Xia189, J. K. Xia190, X. Xia191, Z. Z. Xing192, J. Y. Xu193, J. L. Xu194, J. Xu195, Y. Xu196, T. Xue197, J. Yan198, C. C. Yang199, L. Yang200, M. S. Yang201, M. T. Yang202, M. Ye203, M. Yeh204, Y. S. Yeh205, B. L. Young206, G. Y. Yu207, J. Y. Yu208, Z. Y. Yu209, S. L. Zang210, B. Zeng211, L. Zhan212, C. Zhang213, F. H. Zhang214, J. W. Zhang215, Q. M. Zhang216, Q. Zhang217, S. H. Zhang218, Y. C. Zhang219, Y. M. Zhang220, Y. H. Zhang221, Y. X. Zhang222, Z. J. Zhang223, Z. Y. Zhang224, Z. P. Zhang225, J. Zhao226, Q. W. Zhao227, Y. Zhao228, Y. B. Zhao229, L. Zheng230, W. L. Zhong231, L. Zhou232, Z. Y. Zhou233, H. L. Zhuang234, J. H. Zou235
Affiliations: 1Daya Bay Collaboration, 2Daya Bay Collaboration, 3Daya Bay Collaboration, 4Daya Bay Collaboration, 5Daya Bay Collaboration, 6Daya Bay Collaboration, 7Daya Bay Collaboration, 8Daya Bay Collaboration, 9Daya Bay Collaboration, 10Daya Bay Collaboration, 11Daya Bay Collaboration, 12Daya Bay Collaboration, 13Daya Bay Collaboration, 14Daya Bay Collaboration, 15Daya Bay Collaboration, 16Daya Bay Collaboration, 17Daya Bay Collaboration, 18Daya Bay Collaboration, 19Daya Bay Collaboration, 20Daya Bay Collaboration, 21Daya Bay Collaboration, 22Daya Bay Collaboration, 23Daya Bay Collaboration, 24Daya Bay Collaboration, 25Daya Bay Collaboration, 26Daya Bay Collaboration, 27Daya Bay Collaboration, 28Daya Bay Collaboration, 29Daya Bay Collaboration, 30Daya Bay Collaboration, 31Daya Bay Collaboration, 32Daya Bay Collaboration, 33Daya Bay Collaboration, 34Daya Bay Collaboration, 35Daya Bay Collaboration, 36Daya Bay Collaboration, 37Daya Bay Collaboration, 38Daya Bay Collaboration, 39Daya Bay Collaboration, 40Daya Bay Collaboration, 41Daya Bay Collaboration, 42Daya Bay Collaboration, 43Daya Bay Collaboration, 44Daya Bay Collaboration, 45Daya Bay Collaboration, 46Daya Bay Collaboration, 47Daya Bay Collaboration, 48Daya Bay Collaboration, 49Daya Bay Collaboration, 50Daya Bay Collaboration, 51Daya Bay Collaboration, 52Daya Bay Collaboration, 53Daya Bay Collaboration, 54Daya Bay Collaboration, 55Daya Bay Collaboration, 56Daya Bay Collaboration, 57Daya Bay Collaboration, 58Daya Bay Collaboration, 59Daya Bay Collaboration, 60Daya Bay Collaboration, 61Daya Bay Collaboration, 62Daya Bay Collaboration, 63Daya Bay Collaboration, 64Daya Bay Collaboration, 65Daya Bay Collaboration, 66Daya Bay Collaboration, 67Daya Bay Collaboration, 68Daya Bay Collaboration, 69Daya Bay Collaboration, 70Daya Bay Collaboration, 71Daya Bay Collaboration, 72Daya Bay Collaboration, 73Daya Bay Collaboration, 74Daya Bay Collaboration, 75Daya Bay Collaboration, 76Daya Bay Collaboration, 77Daya Bay Collaboration, 78Daya Bay Collaboration, 79Daya Bay Collaboration, 80Daya Bay Collaboration, 81Daya Bay Collaboration, 82Daya Bay Collaboration, 83Daya Bay Collaboration, 84Daya Bay Collaboration, 85Daya Bay Collaboration, 86Daya Bay Collaboration, 87Daya Bay Collaboration, 88Daya Bay Collaboration, 89Daya Bay Collaboration, 90Daya Bay Collaboration, 91Daya Bay Collaboration, 92Daya Bay Collaboration, 93Daya Bay Collaboration, 94Daya Bay Collaboration, 95Daya Bay Collaboration, 96Daya Bay Collaboration, 97Daya Bay Collaboration, 98Daya Bay Collaboration, 99Daya Bay Collaboration, 100Daya Bay Collaboration, 101Daya Bay Collaboration, 102Daya Bay Collaboration, 103Daya Bay Collaboration, 104Daya Bay Collaboration, 105Daya Bay Collaboration, 106Daya Bay Collaboration, 107Daya Bay Collaboration, 108Daya Bay Collaboration, 109Daya Bay Collaboration, 110Daya Bay Collaboration, 111Daya Bay Collaboration, 112Daya Bay Collaboration, 113Daya Bay Collaboration, 114Daya Bay Collaboration, 115Daya Bay Collaboration, 116Daya Bay Collaboration, 117Daya Bay Collaboration, 118Daya Bay Collaboration, 119Daya Bay Collaboration, 120Daya Bay Collaboration, 121Daya Bay Collaboration, 122Daya Bay Collaboration, 123Daya Bay Collaboration, 124Daya Bay Collaboration, 125Daya Bay Collaboration, 126Daya Bay Collaboration, 127Daya Bay Collaboration, 128Daya Bay Collaboration, 129Daya Bay Collaboration, 130Daya Bay Collaboration, 131Daya Bay Collaboration, 132Daya Bay Collaboration, 133Daya Bay Collaboration, 134Daya Bay Collaboration, 135Daya Bay Collaboration, 136Daya Bay Collaboration, 137Daya Bay Collaboration, 138Daya Bay Collaboration, 139Daya Bay Collaboration, 140Daya Bay Collaboration, 141Daya Bay Collaboration, 142Daya Bay Collaboration, 143Daya Bay Collaboration, 144Daya Bay Collaboration, 145Daya Bay Collaboration, 146Daya Bay Collaboration, 147Daya Bay Collaboration, 148Daya Bay Collaboration, 149Daya Bay Collaboration, 150Daya Bay Collaboration, 151Daya Bay Collaboration, 152Daya Bay Collaboration, 153Daya Bay Collaboration, 154Daya Bay Collaboration, 155Daya Bay Collaboration, 156Daya Bay Collaboration, 157Daya Bay Collaboration, 158Daya Bay Collaboration, 159Daya Bay Collaboration, 160Daya Bay Collaboration, 161Daya Bay Collaboration, 162Daya Bay Collaboration, 163Daya Bay Collaboration, 164Daya Bay Collaboration, 165Daya Bay Collaboration, 166Daya Bay Collaboration, 167Daya Bay Collaboration, 168Daya Bay Collaboration, 169Daya Bay Collaboration, 170Daya Bay Collaboration, 171Daya Bay Collaboration, 172Daya Bay Collaboration, 173Daya Bay Collaboration, 174Daya Bay Collaboration, 175Daya Bay Collaboration, 176Daya Bay Collaboration, 177Daya Bay Collaboration, 178Daya Bay Collaboration, 179Daya Bay Collaboration, 180Daya Bay Collaboration, 181Daya Bay Collaboration, 182Daya Bay Collaboration, 183Daya Bay Collaboration, 184Daya Bay Collaboration, 185Daya Bay Collaboration, 186Daya Bay Collaboration, 187Daya Bay Collaboration, 188Daya Bay Collaboration, 189Daya Bay Collaboration, 190Daya Bay Collaboration, 191Daya Bay Collaboration, 192Daya Bay Collaboration, 193Daya Bay Collaboration, 194Daya Bay Collaboration, 195Daya Bay Collaboration, 196Daya Bay Collaboration, 197Daya Bay Collaboration, 198Daya Bay Collaboration, 199Daya Bay Collaboration, 200Daya Bay Collaboration, 201Daya Bay Collaboration, 202Daya Bay Collaboration, 203Daya Bay Collaboration, 204Daya Bay Collaboration, 205Daya Bay Collaboration, 206Daya Bay Collaboration, 207Daya Bay Collaboration, 208Daya Bay Collaboration, 209Daya Bay Collaboration, 210Daya Bay Collaboration, 211Daya Bay Collaboration, 212Daya Bay Collaboration, 213Daya Bay Collaboration, 214Daya Bay Collaboration, 215Daya Bay Collaboration, 216Daya Bay Collaboration, 217Daya Bay Collaboration, 218Daya Bay Collaboration, 219Daya Bay Collaboration, 220Daya Bay Collaboration, 221Daya Bay Collaboration, 222Daya Bay Collaboration, 223Daya Bay Collaboration, 224Daya Bay Collaboration, 225Daya Bay Collaboration, 226Daya Bay Collaboration, 227Daya Bay Collaboration, 228Daya Bay Collaboration, 229Daya Bay Collaboration, 230Daya Bay Collaboration, 231Daya Bay Collaboration, 232Daya Bay Collaboration, 233Daya Bay Collaboration, 234Daya Bay Collaboration, 235Daya Bay Collaboration

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GW$_{\rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{\rm -3}~{\rm eV}^{2} < |\Delta m_{41}^{2}| < 0. Read More

Low-noise, position-sensitive Silicon Drift Detectors (SDDs) are particularly useful for experiments in which a good energy resolution combined with a large sensitive area is required, as in the case of X-ray astronomy space missions and medical applications. This paper presents the experimental characterization of VEGA, a custom Application Specific Integrated Circuit (ASIC) used as the front-end electronics for XDXL-2, a large-area (30.5 cm^2) SDD prototype. Read More

We present the results of FLUKA simulations of the propagation of cosmogenic muons in a 20 kton spherical liquid scintillator detector underneath 700 to 900 meters of rock. A showering muon is one which deposits at least 3 GeV in the detector in addition to ionization energy. We find that 20 percent of muons are showering and a further 10 percent of muon events are muon bundles of which more than one muon enters the detector. Read More

We studied the radiative muon decay $\mu^+ \to e^+\nu\bar{\nu}\gamma$ by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B($\mu^+ \to e^+\nu\bar{\nu}\gamma$) = (6. Read More

The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay \meg\ by using one of the most intense continuous $\mu^+$ beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. Read More

We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the $6 \times 10^{-14}$ level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. Read More

2012Sep
Authors: M. Feroci, J. W. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, P. Azzarello, G. Baldazzi, S. Balman, M. Barbera, T. Belloni, G. Bertuccio, S. Bianchi, A. Bianchini, P. Bodin, J. -M. Bonnet Bidaud, S. Boutloukos, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. R. Cadoux, P. Cais, G. A. Caliandro, R. Campana, S. Campana, P. Casella, D. Chakrabarty, J. Chenevez, J. Coker, R. Cole, A. Collura, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Aì, V. D'Elia, E. Del Monte, D. De Martino, A. De Rosa, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, C. Ferrigno, M. H. Finger, G. W. Fraser, F. Fuschino, D. K. Galloway, J. L. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, A. Goldwurm, D. Götz, C. Gouiffes, M. Grassi, P. Groot C. Guidorzi, D. Haas, F. Hansen, D. H. Hartmann, C. A. Haswe, A. Heger, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. J. M. in't Zand, J. Isern, G. Israe, L. Izzo, P. Jonker, P. Kaaret, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. M. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. K. Lamb, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. J. Maccarone, D. Macera, D. Maier, P. Malcovati, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. M. McHardy, A. Melatos, M. Mendez, S. Migliari, R. Mignani, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, F. Muleri, A. J. Norton, M. Nowak, P. O'Brien, M. Orienti, M. Orio, M. Orlandini, P. Orleanski, J. P. Osborne, R. Osten, F. Ozel, L. Pacciani, A. Papitto, B. Paul, E. Perinati, V. Petracek, J. Portell, J. Poutanen, D. Psaltis, D. Rambaud, G. Ramsay, M. Rapisarda, A. Rachevski, P. S. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, P. Rodríguez-Gil, J. Rodriguez, P. Romano, E. M. R. Rossi, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, S. Schanne, J. Schee, C. Schmid, A. Schwenk, A. D. Schwope, J. -Y. Seyler, A. Shearer, A. Smith, D. M. Smith, P. J. Smith, V. Sochora, P. Soffitta, P. Soleri, B. Stappers, B. Stelzer, N. Stergioulas, G. Stratta, T. E. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, C. Tenzer, L. Tolos, G. Torok, J. M. Torrejon, D. F. Torres, A. Tramacere, A. Trois, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. A. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, A. Zdziarski, B. Zhang

The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. Read More

The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in the 2022 time-frame. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. The LOFT scientific payload is composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). Read More

Discovering a Higgs boson at the LHC will address a major outstanding issue in particle physics but will also raise many new questions. A concerted effort to determine the couplings of this new state to other Standard Model fields will be of critical importance. Precise knowledge of these couplings can serve as a powerful probe of new physics, and will be needed in attempts to accommodate such a new boson within specific models. Read More

The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed to deliver trigger information and to accurately measure the timing of the $e^+$ in searching for the decay $\mu^+ \rightarrow e^+\gamma$. It is part of a magnetic spectrometer with the $\mu^+$ decay target in the center. It consists of two sectors upstream and downstream the target, each one with two layers: the inner one made with scintillating fibers read out by APDs for trigger and track reconstruction, the outer one consisting in scintillating bars read out by PMTs for trigger and time measurement. Read More

The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Read More

We prove that one can obtain natural bundles of Lie algebras on rank two s-K\"ahler manifolds, whose fibres are isomorphic to so(s+1,s+1), su(s+1,s+1) and sl(2s + 2,\R). In the most rigid case (which includes complex tori and abelian varieties) these bundles have natural flat connections, whose flat global sections act naturally on cohomology. We also present several natural examples of manifolds which can be equipped with an s-K\"ahler structure with various levels of rigidity: complex tori and abelian varieties, cotangent bundles of smooth manifolds and moduli of pointed elliptic curves. Read More

We determine the structure of the $*$-Lie superalgebra generated by a set of carefully chosen natural operators of an orientable WSD manifold of rank three. This Lie superalgebra is formed by global sections of a natural Lie superalgebra bundle, and turns out to be a product of $\mathbf{sl}(4,\C)$ with the full special linear superalgebras of some graded vector spaces isotypical with respect to a natural action of $\mathbf{so}(3,\R)$. We provide an explicit description of one of the real forms of this superalgebra, which is geometrically natural being made of $\mathbf{so}(3,\R)$-invariant operators which preserve the Poincar\'e (odd Hermitean) inner product on the bundle of forms. Read More

Given an orientable weakly self-dual manifold X of rank two, we build a geometric realization of the Lie algebra sl(6,C) as a naturally defined algebra L of endomorphisms of the space of differential forms of X. We provide an explicit description of Serre generators in terms of natural generators of L. This construction gives a bundle on X which is related to the search for a natural Gauge theory on X. Read More

The intense muon beams which will be available at a neutrino factory provide a unique opportunity for searching for physics beyond the standard model, both in lepton flavor violation and in the search for a permanent electric dipole moment for the muon. Other experiments which can use intense muon beams will also be possible. Read More

An 800L liquid xenon scintillation $\gamma$ ray detector is being developed for the MEG experiment which will search for $\mu^+\to\mathrm{e}^+\gamma$ decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100L prototype with an active volume of 372x372x496 mm$^3$ to study the scintillation light absorption. Read More

The optical properties of LXe in the vacuum ultra violet (VUV), determining the performance of a scintillation calorimeter, are discussed in detail. The available data, measured in a wider spectral region from visible to UV light, and in a large range of Xe densities, from gas to liquid, are examined. It is shown that this information can be used for deriving the LXe optical properties in the VUV. Read More

This final article about the CHOOZ experiment presents a complete description of the electron antineutrino source and detector, the calibration methods and stability checks, the event reconstruction procedures and the Monte Carlo simulation. The data analysis, systematic effects and the methods used to reach our conclusions are fully discussed. Some new remarks are presented on the deduction of the confidence limits and on the correct treatment of systematic errors. Read More

For all $m > 0$ we build a two-dimensional family of smooth manifolds of real dimension $3m + 2$ and use it to interpolate between the anticanonical family in the complex projective space of dimension $m + 1$ and its mirror dual. The main tool is the notion of self-dual manifold. Read More

We introduce self-dual manifolds and show that they can be used to encode mirror symmetry for affine-K\"{a}hler manifolds and for elliptic curves. Their geometric properties, especially the link with special lagrangian fibrations and the existence of a transformation similar to the Fourier-Mukai functor, suggest that this approach may be able to explain mirror symmetry also in other situations Read More

In the first part of this paper we begin the study of polysymplectic manifolds, and of their relationship with PDE's. This notion provides a generalization of symplectic manifolds which is very well suited for the geometric study of PDE's with values in a smooth manifold. Some of the standard tools of analytical mechanics, such as the Legendre transformation and Hamilton's equations, are shown to generalize to this new setting. Read More

We present new results based on the entire CHOOZ data sample. We find (at 90% confidence level) no evidence for neutrino oscillations in the anti_nue disappearance mode, for the parameter region given by approximately Delta m**2 > 7 x 10**-4 eV^2 for maximum mixing, and sin**2(2 theta) = 0.10 for large Delta m**2. Read More

The CHOOZ experiment measured the antineutrino flux at a distance of about 1 Km from two nuclear reactors in order to detect possible neutrino oscillations with squared mass differences as low as 10**-3 eV**2 for full mixing. We show that the data analysis of the electron antineutrino events, collected by our liquid scintillation detector, locates the antineutrino source within a cone of half-aperture of about 18 degrees at the 68% C.L. Read More