M. Gabriel - Max Planck Inst. für Physik, Munich, Germany

M. Gabriel
Are you M. Gabriel?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. Gabriel
Affiliation
Max Planck Inst. für Physik, Munich, Germany
City
Munich
Country
Germany

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (8)
 
Physics - Instrumentation and Detectors (8)
 
Solar and Stellar Astrophysics (3)
 
Astrophysics (2)
 
Mathematics - Numerical Analysis (1)
 
Physics - Accelerator Physics (1)
 
High Energy Physics - Phenomenology (1)

Publications Authored By M. Gabriel

2016Aug
Authors: H. Abramowicz, A. Abusleme, K. Afanaciev, N. Alipour Tehrani, C. Balázs, Y. Benhammou, M. Benoit, B. Bilki, J. -J. Blaising, M. J. Boland, M. Boronat, O. Borysov, I. Božović-Jelisavčić, M. Buckland, S. Bugiel, P. N. Burrows, T. K. Charles, W. Daniluk, D. Dannheim, R. Dasgupta, M. Demarteau, M. A. Díaz Gutierrez, G. Eigen, K. Elsener, U. Felzmann, M. Firlej, E. Firu, T. Fiutowski, J. Fuster, M. Gabriel, F. Gaede, I. García, V. Ghenescu, J. Goldstein, S. Green, C. Grefe, M. Hauschild, C. Hawkes, D. Hynds, M. Idzik, G. Kačarević, J. Kalinowski, S. Kananov, W. Klempt, M. Kopec, M. Krawczyk, B. Krupa, M. Kucharczyk, S. Kulis, T. Laštovička, T. Lesiak, A. Levy, I. Levy, L. Linssen, S. Lukić, A. A. Maier, V. Makarenko, J. S. Marshall, K. Mei, G. Milutinović-Dumbelović, J. Moroń, A. Moszczyński, D. Moya, R. M. Münker, A. Münnich, A. T. Neagu, N. Nikiforou, K. Nikolopoulos, A. Nürnberg, M. Pandurović, B. Pawlik, E. Perez Codina, I. Peric, M. Petric, F. Pitters, S. G. Poss, T. Preda, D. Protopopescu, R. Rassool, S. Redford, J. Repond, A. Robson, P. Roloff, E. Ros, O. Rosenblat, A. Ruiz-Jimeno, A. Sailer, D. Schlatter, D. Schulte, N. Shumeiko, E. Sicking, F. Simon, R. Simoniello, P. Sopicki, S. Stapnes, R. Ström, J. Strube, K. P. Świentek, M. Szalay, M. Tesař, M. A. Thomson, J. Trenado, U. I. Uggerhøj, N. van der Kolk, E. van der Kraaij, M. Vicente Barreto Pinto, I. Vila, M. Vogel Gonzalez, M. Vos, J. Vossebeld, M. Watson, N. Watson, M. A. Weber, H. Weerts, J. D. Wells, L. Weuste, A. Winter, T. Wojtoń, L. Xia, B. Xu, A. F. Żarnecki, L. Zawiejski, I. -S. Zgura

The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. Read More

2016Aug
Authors: The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

2016Apr
Authors: Z. Deng, Y. Li, Y. Wang, Q. Yue, Z. Yang, J. Apostolakis, G. Folger, C. Grefe, V. Ivantchenko, A. Ribon, V. Uzhinskiy, D. Boumediene, C. Carloganu, V. Français, G. Cho, D-W. Kim, S. C. Lee, W. Park, S. Vallecorsa, S. Cauwenbergh, M. Tytgat, A. Pingault, N. Zaganidis, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, T. Yoshioka, E. Cortina Gil, S. Mannai, V. Buridon, C. Combaret, L. Caponetto, R. Eté, G. Garillot, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, M. Chadeeva, M. Danilov, M. Gabriel, P. Goecke, C. Kiesling, N. vanderKolk, F. Simon, M. Szalay, S. Bilokin, J. Bonis, P. Cornebise, F. Richard, R. Pöschl, J. Rouëné, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, K. Belkadhi, V. Boudry, J-C. Brient, R. Cornat, M. Frotin, F. Gastaldi, Y. Haddad, F. Magniette, M. Ruan, M. Rubio-Roy, K. Shpak, H. Videau, D. Yu, S. Callier, S. Conforti di Lorenzo, F. Dulucq, G. Martin-Chassard, Ch. de la Taille, L. Raux, N. Seguin-Moreau, K. Kotera, H. Ono, T. Takeshita, F. Corriveau

The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. Read More

In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0. Read More

2016Feb
Authors: The CALICE Collaboration, G. Eigen, T. Price, N. K. Watson, J. S. Marshall, M. A. Thomson, D. R. Ward, D. Benchekroun, A. Hoummada, Y. Khoulaki, J. Apostolakis, A. Dotti, G. Folger, V. Ivantchenko, A. Ribon, V. Uzhinskiy, J. -Y. Hostachy, L. Morin, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, K. Briggl, P. Eckert, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, B. van Doren, G. W. Wilson, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, S. Takada, T. Tomita, T. Yoshioka, M. Wing, A. Bonnevaux, C. Combaret, L. Caponetto, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, B. Bobchenko, O. Markin, E. Novikov, V. Rusinov, E. Tarkovsky, N. Kirikova, V. Kozlov, P. Smirnov, Y. Soloviev, D. Besson, P. Buzhan, M. Chadeeva, M. Danilov, A. Drutskoy, A. Ilyin, D. Mironov, R. Mizuk, E. Popova, M. Gabriel, P. Goecke, C. Kiesling, N. van der Kolk, F. Simon, M. Szalay, S. Bilokin, J. Bonis, P. Cornebise, R. Pöschl, F. Richard, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, E. Becheva, V. Boudry, J-C. Brient, J-B. Cizel, C. Clerc, R. Cornat, M. Frotin, F. Gastaldi, F. Magniette, P. Mora de Freitas, G. Musat, S. Pavy, M. Rubio-Roy, M. Ruan, H. Videau, S. Callier, F. Dulucq, G. Martin-Chassard, L. Raux, N. Seguin-Moreau, Ch. de la Taille, J. Cvach, P. Gallus, M. Havranek, M. Janata, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, K. Kotera, H. Ono, T. Takeshita, S. Ieki, Y. Kamiya, W. Ootani, N. Shibata, D. Jeans, S. Komamiya, H. Nakanishi

The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9. Read More

2016Feb
Authors: V. Buridon1, C. Combaret2, L. Caponetto3, R. Eté4, G. Garillot5, G. Grenier6, R. Han7, J. C. Ianigro8, R. Kieffer9, I. Laktineh10, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, E. Cortina Gil, S. Mannai, S. Cauwenbergh, M. Tytgat, A. Pingault, N. Zaganidis, M. Anduze, V. Balagura, K. Belkadhi, V. Boudry, J-C. Brient, R. Cornat, M. Frotin, F. Gastaldi, Y. Haddad, M. Ruan, K. Shpak, H. Videau, D. Yu, S. Callier, S. Conforti di Lorenzo, F. Dulucq, G. Martin-Chassard, Ch. de la Taille, L. Raux, N. Seguin-Moreau, D. Boumediene, C. Carloganu, V. Français, J. Bonis, B. Bouquet, P. Cornebise, Ph. Doublet, M. Faucci-Giannelli, T. Frisson, G. Guilhem, H. Li, F. Richard, R. Pöschl, J. Rouëné, F. Wicek, Z. Zhang, Z. Deng, Y. Li, Y. Wang, Q. Yue, Z. Yang, G. Cho, D-W. Kim, S. C. Lee, W. Park, S. Vallecorsa, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, N. Kirikova, V. Kozlov, P. Smirnov, Y. Soloviev, M. Chadeeva, M. Danilov, M. Gabriel, P. Goecke, C. Kiesling, N. van der Kolk, F. Simon, C. Soldner, M. Szalay, L. Weuste, D. Jeans, S. Komamiya, H. Nakanishi, D. Benchekroun, A. Hoummada, Y. Khoulaki
Affiliations: 1Corresponding author, 2Corresponding author, 3Corresponding author, 4Corresponding author, 5Corresponding author, 6Corresponding author, 7Corresponding author, 8Corresponding author, 9Corresponding author, 10Corresponding author

The CALICE Semi-Digital Hadronic Calorimeter (SDHCAL) prototype, built in 2011, was exposed to beams of hadrons, electrons and muons in two short periods in 2012 on two different beam lines of the CERN SPS. The prototype with its 48 active layers, made of Glass Resistive Plate Chambers and their embedded readout electronics, was run in triggerless and power-pulsing mode. The performance of the SDHCAL during the test beam was found to be very satisfactory with an efficiency exceeding 90% for almost all of the 48 active layers. Read More

2015Sep
Authors: The CALICE collaboration, M. Chefdeville, Y. Karyotakis, J. Repond, J. Schlereth, L. Xia, G. Eigen, J. S. Marshall, M. A. Thomson, D. R. Ward, N. Alipour Tehrani, J. Apostolakis, D. Dannheim, K. Elsener, G. Folger, C. Grefe, V. Ivantchenko, M. Killenberg, W. Klempt, E. van der Kraaij, L. Linssen, A. -I. Lucaci-Timoce, A. Münnich, S. Poss, A. Ribon, P. Roloff, A. Sailer, D. Schlatter, E. Sicking, J. Strube, V. Uzhinskiy, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, G. C. Blazey, A. Dyshkant, K. Francis, V. Zutshi, J. Giraud, D. Grondin, J. -Y. Hostachy, E. Brianne, U. Cornett, D. David, G. Falley, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, S. Karstensen, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, S. Morozov, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, P. Smirnov, M. Terwort, H. L. Tran, A. Vargas-Trevino, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schröder, K. Briggl, P. Eckert, T. Harion, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, B. Bilki, Y. Onel, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, S. Takada, T. Tomita, T. Yoshioka, M. Wing, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, B. Bobchenko, M. Chadeeva, M. Danilov, O. Markin, R. Mizuk, E. Novikov, V. Rusinov, E. Tarkovsky, N. Kirikova, V. Kozlov, P. Smirnov, Y. Soloviev, D. Besson, P. Buzhan, E. Popova, M. Gabriel, C. Kiesling, N. van der Kolk, K. Seidel, F. Simon, C. Soldner, M. Szalay, M. Tesar, L. Weuste, M. S. Amjad, J. Bonis, P. Cornebise, F. Richard, R. Pöschl, J. Rouëné, A. Thiebault, M. Anduze, V. Balagura, V. Boudry, J-C. Brient, J-B. Cizel, R. Cornat, M. Frotin, F. Gastaldi, Y. Haddad, F. Magniette, J. Nanni, S. Pavy, M. Rubio-Roy, K. Shpak, T. H. Tran, H. Videau, D. Yu, S. Callier, S. Conforti di Lorenzo, F. Dulucq, J. Fleury, G. Martin-Chassard, Ch. de la Taille, L. Raux, N. Seguin-Moreau, J. Cvach, P. Gallus, M. Havranek, M. Janata, M. Kovalcuk, J. Kvasnicka, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Ruzicka, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, S. Ieki, Y. Kamiya, W. Ootani, N. Shibata, S. Chen, D. Jeans, S. Komamiya, C. Kozakai, H. Nakanishi, M. Götze, J. Sauer, S. Weber, C. Zeitnitz

We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. Read More

We study $W^{1,p}$ Lagrange interpolation error estimates for general quadrilateral $\mathcal{Q}_{k}$ finite elements with $k\ge 2$. For the most standard case of $p=2$ it turns out that the constant $C$ involved in the error estimate can be bounded in terms of the minimal interior angle of the quadrilateral. Moreover, the same holds for any $p$ in the range $1\le p<3$. Read More

2014Dec
Authors: The CALICE Collaboration, B. Bilki, J. Repond, L. Xia, G. Eigen, M. A. Thomson, D. R. Ward, D. Benchekroun, A. Hoummada, Y. Khoulaki, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, G. C. Blazey, A. Dyshkant, K. Francis, J. G. R. Lima, R. Salcido, V. Zutshi, F. Salvatore, K. Kawagoe, Y. Miyazaki, Y. Sudo, T. Suehara, T. Tomita, H. Ueno, T. Yoshioka, J. Apostolakis, D. Dannheim, G. Folger, V. Ivantchenko, W. Klempt, A. -I. Lucaci-Timoce, A. Ribon, D. Schlatter, E. Sicking, V. Uzhinskiy, J. Giraud, D. Grondin, J. -Y. Hostachy, L. Morin, E. Brianne, U. Cornett, D. David, A. Ebrahimi, G. Falley, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, S. Karstensen, F. Krivan, K. Krüger, S. Lu, B. Lutz, S. Morozov, V. Morgunov, C. Neubüser, M. Reinecke, F. Sefkow, P. Smirnov, H. L. Tran, P. Buhmann, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, K. Briggl, P. Eckert, T. Harion, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, E. Norbeck, D. Northacker, Y. Onel, B. van Doren, G. W. Wilson, M. Wing, C. Combaret, L. Caponetto, R. Eté, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, F. Corriveau, B. Bobchenko, R. Chistov, M. Chadeeva, M. Danilov, A. Drutskoy, A. Epifantsev, O. Markin, D. Mironov, R. Mizuk, E. Novikov, V. Rusinov, E. Tarkovsky, D. Besson, P. Buzhan, A. Ilyin, E. Popova, M. Gabriel, C. Kiesling, N. van der Kolk, F. Simon, C. Soldner, M. Szalay, M. Tesar, L. Weuste, M. S. Amjad, J. Bonis, S. Callier, S. Conforti di Lorenzo, P. Cornebise, F. Dulucq, J. Fleury, T. Frisson, G. Martin-Chassard, R. Pöschl, L. Raux, F. Richard, J. Rouëné, N. Seguin-Moreau, Ch. de la Taille, M. Anduze, V. Boudry, J-C. Brient, C. Clerc, R. Cornat, M. Frotin, F. Gastaldi, A. Matthieu, P. Mora de Freitas, G. Musat, M. Ruan, H. Videau, J. Zacek, J. Cvach, P. Gallus, M. Havranek, M. Janata, J. Kvasnicka, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, D. Jeans, S. Weber

Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9. Read More

2014Nov
Authors: The CALICE Collaboration, B. Bilki1, J. Repond2, J. Schlereth3, L. Xia4, Z. Deng5, Y. Li6, Y. Wang7, Q. Yue8, Z. Yang9, G. Eigen10, Y. Mikami11, T. Price12, N. K. Watson13, M. A. Thomson14, D. R. Ward15, D. Benchekroun16, A. Hoummada17, Y. Khoulaki18, C. Cârloganu19, S. Chang20, A. Khan21, D. H. Kim22, D. J. Kong23, Y. D. Oh24, G. C. Blazey25, A. Dyshkant26, K. Francis27, J. G. R. Lima28, P. Salcido29, V. Zutshi30, V. Boisvert31, B. Green32, A. Misiejuk33, F. Salvatore34, K. Kawagoe35, Y. Miyazaki36, Y. Sudo37, T. Suehara38, T. Tomita39, H. Ueno40, T. Yoshioka41, J. Apostolakis42, G. Folger43, G. Folger44, V. Ivantchenko45, A. Ribon46, V. Uzhinskiy47, S. Cauwenbergh48, M. Tytgat49, N. Zaganidis50, J. -Y. Hostachy51, L. Morin52, K. Gadow53, P. Göttlicher54, C. Günter55, K. Krüger56, B. Lutz57, M. Reinecke58, F. Sefkow59, N. Feege60, E. Garutti61, S. Laurien62, S. Lu63, I. Marchesini64, M. Matysek65, M. Ramilli66, A. Kaplan67, E. Norbeck68, D. Northacker69, Y. Onel70, E. J. Kim71, B. van Doren72, G. W. Wilson73, M. Wing74, B. Bobchenko75, M. Chadeeva76, R. Chistov77, M. Danilov78, A. Drutskoy79, A. Epifantsev80, O. Markin81, R. Mizuk82, E. Novikov83, V. Popov84, V. Rusinov85, E. Tarkovsky86, D. Besson87, E. Popova88, M. Gabriel89, C. Kiesling90, F. Simon91, C. Soldner92, M. Szalay93, M. Tesar94, L. Weuste95, M. S. Amjad96, J. Bonis97, S. Callier98, S. Conforti di Lorenzo99, P. Cornebise100, Ph. Doublet101, F. Dulucq102, M. Faucci-Giannelli103, J. Fleury104, T. Frisson105, B. Kégl106, N. van der Kolk107, H. Li108, G. Martin-Chassard109, F. Richard110, Ch. de la Taille111, R. Pöschl112, L. Raux113, J. Rouëné114, N. Seguin-Moreau115, M. Anduze116, V. Balagura117, E. Becheva118, V. Boudry119, J-C. Brient120, R. Cornat121, M. Frotin122, F. Gastaldi123, F. Magniette124, A. Matthieu125, P. Mora de Freitas126, H. Videau127, J-E. Augustin128, J. David129, P. Ghislain130, D. Lacour131, L. Lavergne132, J. Zacek133, J. Cvach134, P. Gallus135, M. Havranek136, M. Janata137, J. Kvasnicka138, D. Lednicky139, M. Marcisovsky140, I. Polak141, J. Popule142, L. Tomasek143, M. Tomasek144, P. Ruzicka145, P. Sicho146, J. Smolik147, V. Vrba148, J. Zalesak149, D. Jeans150, M. Götze151
Affiliations: 1Argonne National Laboratory, Argonne, USA, 2Argonne National Laboratory, Argonne, USA, 3Argonne National Laboratory, Argonne, USA, 4Argonne National Laboratory, Argonne, USA, 5Tsinghua University, Beijing, P.R. China, 6Tsinghua University, Beijing, P.R. China, 7Tsinghua University, Beijing, P.R. China, 8Tsinghua University, Beijing, P.R. China, 9Tsinghua University, Beijing, P.R. China, 10University of Bergen, Bergen, Norway, 11University of Birmingham, Birmingham, UK, 12University of Birmingham, Birmingham, UK, 13University of Birmingham, Birmingham, UK, 14University of Cambridge, Cambridge, UK, 15University of Cambridge, Cambridge, UK, 16Université Hassan II Aïn Chock, Faculté des sciences, Casablanca, Morocco, 17Université Hassan II Aïn Chock, Faculté des sciences, Casablanca, Morocco, 18Université Hassan II Aïn Chock, Faculté des sciences, Casablanca, Morocco, 19Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France, 20Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 21Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 22Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 23Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 24Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 25NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 26NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 27NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 28NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 29NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 30NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 31Royal Holloway University of London, Dept. of Physics, Egham, UK, 32Royal Holloway University of London, Dept. of Physics, Egham, UK, 33Royal Holloway University of London, Dept. of Physics, Egham, UK, 34Royal Holloway University of London, Dept. of Physics, Egham, UK, 35Department of Physics, Kyushu University, Fukuoka, Japan, 36Department of Physics, Kyushu University, Fukuoka, Japan, 37Department of Physics, Kyushu University, Fukuoka, Japan, 38Department of Physics, Kyushu University, Fukuoka, Japan, 39Department of Physics, Kyushu University, Fukuoka, Japan, 40Department of Physics, Kyushu University, Fukuoka, Japan, 41Department of Physics, Kyushu University, Fukuoka, Japan, 42CERN, Genève, Switzerland, 43CERN, Genève, Switzerland, 44CERN, Genève, Switzerland, 45CERN, Genève, Switzerland, 46CERN, Genève, Switzerland, 47CERN, Genève, Switzerland, 48Ghent University, Department of Physics and Astronomy, Gent, Belgium, 49Ghent University, Department of Physics and Astronomy, Gent, Belgium, 50Ghent University, Department of Physics and Astronomy, Gent, Belgium, 51Laboratoire de Physique Subatomique et de Cosmologie - Université Grenoble-Alpes, Grenoble, France, 52Laboratoire de Physique Subatomique et de Cosmologie - Université Grenoble-Alpes, Grenoble, France, 53DESY, Hamburg, Germany, 54DESY, Hamburg, Germany, 55DESY, Hamburg, Germany, 56DESY, Hamburg, Germany, 57DESY, Hamburg, Germany, 58DESY, Hamburg, Germany, 59DESY, Hamburg, Germany, 60Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 61Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 62Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 63Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 64Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 65Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 66Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 67University of Heidelberg, Fakultät für Physik und Astronomie, Heidelberg, Germany, 68University of Iowa, Dept. of Physics and Astronomy, Iowa City, USA, 69University of Iowa, Dept. of Physics and Astronomy, Iowa City, USA, 70University of Iowa, Dept. of Physics and Astronomy, Iowa City, USA, 71Chonbuk National University, Jeonju, South Korea, 72University of Kansas, Department of Physics and Astronomy, Lawrence, USA, 73University of Kansas, Department of Physics and Astronomy, Lawrence, USA, 74Department of Physics and Astronomy, University College London, London, UK, 75Institute of Theoretical and Experimental Physics, Moscow, Russia, 76Institute of Theoretical and Experimental Physics, Moscow, Russia, 77Institute of Theoretical and Experimental Physics, Moscow, Russia, 78Institute of Theoretical and Experimental Physics, Moscow, Russia, 79Institute of Theoretical and Experimental Physics, Moscow, Russia, 80Institute of Theoretical and Experimental Physics, Moscow, Russia, 81Institute of Theoretical and Experimental Physics, Moscow, Russia, 82Institute of Theoretical and Experimental Physics, Moscow, Russia, 83Institute of Theoretical and Experimental Physics, Moscow, Russia, 84Institute of Theoretical and Experimental Physics, Moscow, Russia, 85Institute of Theoretical and Experimental Physics, Moscow, Russia, 86Institute of Theoretical and Experimental Physics, Moscow, Russia, 87MEPhI, Moscow, Russia, 88MEPhI, Moscow, Russia, 89Max Planck Inst. für Physik, Munich, Germany, 90Max Planck Inst. für Physik, Munich, Germany, 91Max Planck Inst. für Physik, Munich, Germany, 92Max Planck Inst. für Physik, Munich, Germany, 93Max Planck Inst. für Physik, Munich, Germany, 94Max Planck Inst. für Physik, Munich, Germany, 95Max Planck Inst. für Physik, Munich, Germany, 96Laboratoire de l'Accélérateur Linéaire, 97Laboratoire de l'Accélérateur Linéaire, 98Laboratoire de l'Accélérateur Linéaire, 99Laboratoire de l'Accélérateur Linéaire, 100Laboratoire de l'Accélérateur Linéaire, 101Laboratoire de l'Accélérateur Linéaire, 102Laboratoire de l'Accélérateur Linéaire, 103Laboratoire de l'Accélérateur Linéaire, 104Laboratoire de l'Accélérateur Linéaire, 105Laboratoire de l'Accélérateur Linéaire, 106Laboratoire de l'Accélérateur Linéaire, 107Laboratoire de l'Accélérateur Linéaire, 108Laboratoire de l'Accélérateur Linéaire, 109Laboratoire de l'Accélérateur Linéaire, 110Laboratoire de l'Accélérateur Linéaire, 111Laboratoire de l'Accélérateur Linéaire, 112Laboratoire de l'Accélérateur Linéaire, 113Laboratoire de l'Accélérateur Linéaire, 114Laboratoire de l'Accélérateur Linéaire, 115Laboratoire de l'Accélérateur Linéaire, 116Laboratoire Leprince-Ringuet, 117Laboratoire Leprince-Ringuet, 118Laboratoire Leprince-Ringuet, 119Laboratoire Leprince-Ringuet, 120Laboratoire Leprince-Ringuet, 121Laboratoire Leprince-Ringuet, 122Laboratoire Leprince-Ringuet, 123Laboratoire Leprince-Ringuet, 124Laboratoire Leprince-Ringuet, 125Laboratoire Leprince-Ringuet, 126Laboratoire Leprince-Ringuet, 127Laboratoire Leprince-Ringuet, 128Laboratoire de Physique Nucléaire et de Hautes Energies, 129Laboratoire de Physique Nucléaire et de Hautes Energies, 130Laboratoire de Physique Nucléaire et de Hautes Energies, 131Laboratoire de Physique Nucléaire et de Hautes Energies, 132Laboratoire de Physique Nucléaire et de Hautes Energies, 133Charles University, Institute of Particle \& Nuclear Physics, Prague, Czech Republic, 134Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 135Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 136Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 137Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 138Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 139Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 140Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 141Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 142Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 143Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 144Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 145Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 146Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 147Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 148Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 149Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 150Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan, 151Bergische Universität Wuppertal, Wuppertal, Germany

A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected negatively charged pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the Geant4 simulation tool kit are compared to this data. Read More

Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their "quiet" main sequence phase and later on during their subgiant and helium burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions. Read More

The era of detailed asteroseismic analyses opened by space missions such as CoRoT and $\textit{Kepler}$ has highlighted the need for stellar models devoid of numerical inaccuracies, in order to be able to diagnose which physical aspects are being ignored or poorly treated in standard stellar modeling. We tackle here the important problem of fixing convective zones boundaries in the frame of the local mixing length theory. First we show that the only correct way to locate a convective zone boundary is to find, at each iteration step, through interpolations or extrapolations from points $\textit{within the convective zone}$, the mass where the radiative luminosity is equal to the total one. Read More

2014Apr
Authors: C. Adloff1, J. -J. Blaising2, M. Chefdeville3, C. Drancourt4, R. Gaglione5, N. Geffroy6, Y. Karyotakis7, I. Koletsou8, J. Prast9, G. Vouters J. Repond10, J. Schlereth11, L. Xia E. Baldolemar12, J. Li13, S. T. Park14, M. Sosebee15, A. P. White16, J. Yu17, G. Eigen18, M. A. Thomson19, D. R. Ward20, D. Benchekroun21, A. Hoummada22, Y. Khoulaki J. Apostolakis23, S. Arfaoui24, M. Benoit25, D. Dannheim26, K. Elsener27, G. Folger28, C. Grefe29, V. Ivantchenko30, M. Killenberg31, W. Klempt32, E. van der Kraaij33, L. Linssen34, A. -I. Lucaci-Timoce35, A. Münnich36, S. Poss37, A. Ribon38, P. Roloff39, A. Sailer40, D. Schlatter41, E. Sicking42, J. Strube43, V. Uzhinskiy44, C. Carloganu45, P. Gay46, S. Manen47, L. Royer48, U. Cornett49, D. David50, A. Ebrahimi51, G. Falley52, N. Feege53, K. Gadow54, P. Göttlicher55, C. Günter56, O. Hartbrich57, B. Hermberg58, S. Karstensen59, F. Krivan60, K. Krüger61, S. Lu62, B. Lutz63, S. Morozov64, V. Morgunov65, C. Neubüser66, M. Reinecke67, F. Sefkow68, P. Smirnov69, M. Terwort70, A. Fagot71, M. Tytgat72, N. Zaganidis73, J. -Y. Hostachy74, L. Morin75, E. Garutti76, S. Laurien77, I. Marchesini78, M. Matysek79, M. Ramilli80, K. Briggl81, P. Eckert82, T. Harion83, H. -Ch. Schultz-Coulon84, W. Shen85, R. Stamen86, S. Chang87, A. Khan88, D. H. Kim89, D. J. Kong90, Y. D. Oh91, B. Bilki92, E. Norbeck93, D. Northacker94, Y. Onel95, G. W. Wilson96, K. Kawagoe97, Y. Miyazaki98, Y. Sudo99, H. Ueno100, T. Yoshioka101, P. D. Dauncey102, E. Cortina Gil103, S. Mannai104, G. Baulieu105, P. Calabria106, L. Caponetto107, C. Combaret108, R. Della Negra109, R. Ete110, G. Grenier111, R. Han112, J-C. Ianigro113, R. Kieffer114, I. Laktineh115, N. Lumb116, H. Mathez117, L. Mirabito118, A. Petrukhin119, A. Steen120, W. Tromeur121, M. Vander Donckt122, Y. Zoccarato J. Berenguer Antequera123, E. Calvo Alamillo124, M. -C. Fouz125, J. Puerta-Pelayo126, F. Corriveau127, B. Bobchenko128, M. Chadeeva129, M. Danilov130, A. Epifantsev131, O. Markin132, R. Mizuk133, E. Novikov134, V. Rusinov135, E. Tarkovsky136, V. Kozlov137, Y. Soloviev138, D. Besson139, P. Buzhan140, A. Ilyin141, V. Kantserov142, V. Kaplin143, E. Popova144, V. Tikhomirov145, M. Gabriel146, C. Kiesling147, K. Seidel148, F. Simon149, C. Soldner150, M. Szalay151, M. Tesar152, L. Weuste153, M. S. Amjad154, J. Bonis155, S. Conforti di Lorenzo156, P. Cornebise157, J. Fleury158, T. Frisson159, N. van der Kolk160, F. Richard161, R. Pöschl162, J. Rouene163, M. Anduze164, V. Balagura165, E. Becheva166, V. Boudry167, J-C. Brient168, R. Cornat169, M. Frotin170, F. Gastaldi171, E. Guliyev172, Y. Haddad173, F. Magniette174, M. Ruan175, T. H. Tran176, H. Videau177, S. Callier178, F. Dulucq179, G. Martin-Chassard180, Ch. de la Taille181, L. Raux182, N. Seguin-Moreau183, J. Zacek184, J. Cvach185, P. Gallus186, M. Havranek187, M. Janata188, J. Kvasnicka189, D. Lednicky190, M. Marcisovsky191, I. Polak192, J. Popule193, L. Tomasek194, M. Tomasek195, P. Ruzicka196, P. Sicho197, J. Smolik198, V. Vrba199, J. Zalesak200, . Belhorma201, H. Ghazlane202, K. Kotera203, H. Ono204, T. Takeshita205, S. Uozumi206, J. S. Chai207, H. S. Song208, S. H. Lee209, M. Götze210, J. Sauer211, S. Weber212, C. Zeitnitz213
Affiliations: 1The CALICE Collaboration, 2The CALICE Collaboration, 3The CALICE Collaboration, 4The CALICE Collaboration, 5The CALICE Collaboration, 6The CALICE Collaboration, 7The CALICE Collaboration, 8The CALICE Collaboration, 9The CALICE Collaboration, 10The CALICE Collaboration, 11The CALICE Collaboration, 12The CALICE Collaboration, 13The CALICE Collaboration, 14The CALICE Collaboration, 15The CALICE Collaboration, 16The CALICE Collaboration, 17The CALICE Collaboration, 18The CALICE Collaboration, 19The CALICE Collaboration, 20The CALICE Collaboration, 21The CALICE Collaboration, 22The CALICE Collaboration, 23The CALICE Collaboration, 24The CALICE Collaboration, 25The CALICE Collaboration, 26The CALICE Collaboration, 27The CALICE Collaboration, 28The CALICE Collaboration, 29The CALICE Collaboration, 30The CALICE Collaboration, 31The CALICE Collaboration, 32The CALICE Collaboration, 33The CALICE Collaboration, 34The CALICE Collaboration, 35The CALICE Collaboration, 36The CALICE Collaboration, 37The CALICE Collaboration, 38The CALICE Collaboration, 39The CALICE Collaboration, 40The CALICE Collaboration, 41The CALICE Collaboration, 42The CALICE Collaboration, 43The CALICE Collaboration, 44The CALICE Collaboration, 45The CALICE Collaboration, 46The CALICE Collaboration, 47The CALICE Collaboration, 48The CALICE Collaboration, 49The CALICE Collaboration, 50The CALICE Collaboration, 51The CALICE Collaboration, 52The CALICE Collaboration, 53The CALICE Collaboration, 54The CALICE Collaboration, 55The CALICE Collaboration, 56The CALICE Collaboration, 57The CALICE Collaboration, 58The CALICE Collaboration, 59The CALICE Collaboration, 60The CALICE Collaboration, 61The CALICE Collaboration, 62The CALICE Collaboration, 63The CALICE Collaboration, 64The CALICE Collaboration, 65The CALICE Collaboration, 66The CALICE Collaboration, 67The CALICE Collaboration, 68The CALICE Collaboration, 69The CALICE Collaboration, 70The CALICE Collaboration, 71The CALICE Collaboration, 72The CALICE Collaboration, 73The CALICE Collaboration, 74The CALICE Collaboration, 75The CALICE Collaboration, 76The CALICE Collaboration, 77The CALICE Collaboration, 78The CALICE Collaboration, 79The CALICE Collaboration, 80The CALICE Collaboration, 81The CALICE Collaboration, 82The CALICE Collaboration, 83The CALICE Collaboration, 84The CALICE Collaboration, 85The CALICE Collaboration, 86The CALICE Collaboration, 87The CALICE Collaboration, 88The CALICE Collaboration, 89The CALICE Collaboration, 90The CALICE Collaboration, 91The CALICE Collaboration, 92The CALICE Collaboration, 93The CALICE Collaboration, 94The CALICE Collaboration, 95The CALICE Collaboration, 96The CALICE Collaboration, 97The CALICE Collaboration, 98The CALICE Collaboration, 99The CALICE Collaboration, 100The CALICE Collaboration, 101The CALICE Collaboration, 102The CALICE Collaboration, 103The CALICE Collaboration, 104The CALICE Collaboration, 105The CALICE Collaboration, 106The CALICE Collaboration, 107The CALICE Collaboration, 108The CALICE Collaboration, 109The CALICE Collaboration, 110The CALICE Collaboration, 111The CALICE Collaboration, 112The CALICE Collaboration, 113The CALICE Collaboration, 114The CALICE Collaboration, 115The CALICE Collaboration, 116The CALICE Collaboration, 117The CALICE Collaboration, 118The CALICE Collaboration, 119The CALICE Collaboration, 120The CALICE Collaboration, 121The CALICE Collaboration, 122The CALICE Collaboration, 123The CALICE Collaboration, 124The CALICE Collaboration, 125The CALICE Collaboration, 126The CALICE Collaboration, 127The CALICE Collaboration, 128The CALICE Collaboration, 129The CALICE Collaboration, 130The CALICE Collaboration, 131The CALICE Collaboration, 132The CALICE Collaboration, 133The CALICE Collaboration, 134The CALICE Collaboration, 135The CALICE Collaboration, 136The CALICE Collaboration, 137The CALICE Collaboration, 138The CALICE Collaboration, 139The CALICE Collaboration, 140The CALICE Collaboration, 141The CALICE Collaboration, 142The CALICE Collaboration, 143The CALICE Collaboration, 144The CALICE Collaboration, 145The CALICE Collaboration, 146The CALICE Collaboration, 147The CALICE Collaboration, 148The CALICE Collaboration, 149The CALICE Collaboration, 150The CALICE Collaboration, 151The CALICE Collaboration, 152The CALICE Collaboration, 153The CALICE Collaboration, 154The CALICE Collaboration, 155The CALICE Collaboration, 156The CALICE Collaboration, 157The CALICE Collaboration, 158The CALICE Collaboration, 159The CALICE Collaboration, 160The CALICE Collaboration, 161The CALICE Collaboration, 162The CALICE Collaboration, 163The CALICE Collaboration, 164The CALICE Collaboration, 165The CALICE Collaboration, 166The CALICE Collaboration, 167The CALICE Collaboration, 168The CALICE Collaboration, 169The CALICE Collaboration, 170The CALICE Collaboration, 171The CALICE Collaboration, 172The CALICE Collaboration, 173The CALICE Collaboration, 174The CALICE Collaboration, 175The CALICE Collaboration, 176The CALICE Collaboration, 177The CALICE Collaboration, 178The CALICE Collaboration, 179The CALICE Collaboration, 180The CALICE Collaboration, 181The CALICE Collaboration, 182The CALICE Collaboration, 183The CALICE Collaboration, 184The CALICE Collaboration, 185The CALICE Collaboration, 186The CALICE Collaboration, 187The CALICE Collaboration, 188The CALICE Collaboration, 189The CALICE Collaboration, 190The CALICE Collaboration, 191The CALICE Collaboration, 192The CALICE Collaboration, 193The CALICE Collaboration, 194The CALICE Collaboration, 195The CALICE Collaboration, 196The CALICE Collaboration, 197The CALICE Collaboration, 198The CALICE Collaboration, 199The CALICE Collaboration, 200The CALICE Collaboration, 201The CALICE Collaboration, 202The CALICE Collaboration, 203The CALICE Collaboration, 204The CALICE Collaboration, 205The CALICE Collaboration, 206The CALICE Collaboration, 207The CALICE Collaboration, 208The CALICE Collaboration, 209The CALICE Collaboration, 210The CALICE Collaboration, 211The CALICE Collaboration, 212The CALICE Collaboration, 213The CALICE Collaboration

The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9. Read More

Adiabatic modeling of solar-like oscillations cannot exceed a certain level of precision for fitting individual frequencies. This is known as the problem of near surface effects on the mode physics. We present a theoretical study which addresses the problem of frequency precision in non-adiabatic models using a time-dependent convection treatment. Read More

We show that, if solar 5 min. oscillations are excited by convection in the upper layers of the convective envelope, it is impossible to explain the opposite line asymmetries observed in the velocity and intensity spectra with assumptions on the dissipations which reduce the problem to a second order one. The interpretation of that observation requires to solve the full non-adiabatic problem which is of the fourth or sixth order. Read More

We present the results of solar model computation done with the latest Livermore opacities. Models without diffusion, with hydrogen diffusion only and with hydrogen and heavy elements diffusion are considered. The influence of mixing below the convective envelope induced by rotation and angular momentum losses is also discussed. Read More