M. Del Tutto - the NOvA Collaboration

M. Del Tutto
Are you M. Del Tutto?

Claim your profile, edit publications, add additional information:

Contact Details

Name
M. Del Tutto
Affiliation
the NOvA Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (9)
 
Physics - Instrumentation and Detectors (9)

Publications Authored By M. Del Tutto

2017May
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, B. Bullard, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, G. De Geronimo, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, A. Hourlier, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, S. Li, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, S. Rescia, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, C. Thorn, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Read More

MicroBooNE is a liquid-argon-based neutrino experiment, which began collecting data in Fermilab's Booster neutrino beam in October 2015. Physics goals of the experiment include probing the source of the anomalous excess of electron-like events in MiniBooNE. In addition to this, MicroBooNE is carrying out an extensive cross section physics program that will help to probe current theories on neutrino-nucleon interactions and nuclear effects. Read More

2017Apr
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. A. Sutton, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). Read More

2017Mar
Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction. Read More

2016Nov
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. P. Zeller, J. Zennamo, C. Zhang

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Read More

2016Jan
Authors: P. Adamson1, C. Ader2, M. Andrews3, N. Anfimov4, I. Anghel5, K. Arms6, E. Arrieta-Diaz7, A. Aurisano8, D. S. Ayres9, C. Backhouse10, M. Baird11, B. A. Bambah12, K. Bays13, R. Bernstein14, M. Betancourt15, V. Bhatnagar16, B. Bhuyan17, J. Bian18, K. Biery19, T. Blackburn20, V. Bocean21, D. Bogert22, A. Bolshakova23, M. Bowden24, C. Bower25, D. Broemmelsiek26, C. Bromberg27, G. Brunetti28, X. Bu29, A. Butkevich30, D. Capista31, E. Catano-Mur32, T. R. Chase33, S. Childress34, B. C. Choudhary35, B. Chowdhury36, T. E. Coan37, J. A. B. Coelho38, M. Colo39, J. Cooper40, L. Corwin41, D. Cronin-Hennessy42, A. Cunningham43, G. S. Davies44, J. P. Davies45, M. Del Tutto46, P. F. Derwent47, K. N. Deepthi48, D. Demuth49, S. Desai50, G. Deuerling51, A. Devan52, J. Dey53, R. Dharmapalan54, P. Ding55, S. Dixon56, Z. Djurcic57, E. C. Dukes58, H. Duyang59, R. Ehrlich60, G. J. Feldman61, N. Felt62, E. J. Fenyves63, E. Flumerfelt64, S. Foulkes65, M. J. Frank66, W. Freeman67, M. Gabrielyan68, H. R. Gallagher69, M. Gebhard70, T. Ghosh71, W. Gilbert72, A. Giri73, S. Goadhouse74, R. A. Gomes75, L. Goodenough76, M. C. Goodman77, V. Grichine78, N. Grossman79, R. Group80, J. Grudzinski81, V. Guarino82, B. Guo83, A. Habig84, T. Handler85, J. Hartnell86, R. Hatcher87, A. Hatzikoutelis88, K. Heller89, C. Howcroft90, J. Huang91, X. Huang92, J. Hylen93, M. Ishitsuka94, F. Jediny95, C. Jensen96, D. Jensen97, C. Johnson98, H. Jostlein99, G. K. Kafka100, Y. Kamyshkov101, S. M. S. Kasahara102, S. Kasetti103, K. Kephart104, G. Koizumi105, S. Kotelnikov106, I. Kourbanis107, Z. Krahn108, V. Kravtsov109, A. Kreymer110, Ch. Kulenberg111, A. Kumar112, T. Kutnink113, R. Kwarciancy114, J. Kwong115, K. Lang116, A. Lee117, W. M. Lee118, K. Lee119, S. Lein120, J. Liu121, M. Lokajicek122, J. Lozier123, Q. Lu124, P. Lucas125, S. Luchuk126, P. Lukens127, G. Lukhanin128, S. Magill129, K. Maan130, W. A. Mann131, M. L. Marshak132, M. Martens133, J. Martincik134, P. Mason135, K. Matera136, M. Mathis137, V. Matveev138, N. Mayer139, E. McCluskey140, R. Mehdiyev141, H. Merritt142, M. D. Messier143, H. Meyer144, T. Miao145, D. Michael146, S. P. Mikheyev147, W. H. Miller148, S. R. Mishra149, R. Mohanta150, A. Moren151, L. Mualem152, M. Muether153, S. Mufson154, J. Musser155, H. B. Newman156, J. K. Nelson157, E. Niner158, A. Norman159, J. Nowak160, Y. Oksuzian161, A. Olshevskiy162, J. Oliver163, T. Olson164, J. Paley165, P. Pandey166, A. Para167, R. B. Patterson168, G. Pawloski169, N. Pearson170, D. Perevalov171, D. Pershey172, E. Peterson173, R. Petti174, S. Phan-Budd175, L. Piccoli176, A. Pla-Dalmau177, R. K. Plunkett178, R. Poling179, B. Potukuchi180, F. Psihas181, D. Pushka182, X. Qiu183, N. Raddatz184, A. Radovic185, R. A. Rameika186, R. Ray187, B. Rebel188, R. Rechenmacher189, B. Reed190, R. Reilly191, D. Rocco192, D. Rodkin193, K. Ruddick194, R. Rusack195, V. Ryabov196, K. Sachdev197, S. Sahijpal198, H. Sahoo199, O. Samoylov200, M. C. Sanchez201, N. Saoulidou202, P. Schlabach203, J. Schneps204, R. Schroeter205, J. Sepulveda-Quiroz206, P. Shanahan207, B. Sherwood208, A. Sheshukov209, J. Singh210, V. Singh211, A. Smith212, D. Smith213, J. Smolik214, N. Solomey215, A. Sotnikov216, A. Sousa217, K. Soustruznik218, Y. Stenkin219, M. Strait220, L. Suter221, R. L. Talaga222, M. C. Tamsett223, S. Tariq224, P. Tas225, R. J. Tesarek226, R. B. Thayyullathil227, K. Thomsen228, X. Tian229, S. C. Tognini230, R. Toner231, J. Trevor232, G. Tzanakos233, J. Urheim234, P. Vahle235, L. Valerio236, L. Vinton237, T. Vrba238, A. V. Waldron239, B. Wang240, Z. Wang241, A. Weber242, A. Wehmann243, D. Whittington244, N. Wilcer245, R. Wildberger246, D. Wildman247, K. Williams248, S. G. Wojcicki249, K. Wood250, M. Xiao251, T. Xin252, N. Yadav253, S. Yang254, S. Zadorozhnyy255, J. Zalesak256, B. Zamorano257, A. Zhao258, J. Zirnstein259, R. Zwaska260
Affiliations: 1the NOvA Collaboration, 2the NOvA Collaboration, 3the NOvA Collaboration, 4the NOvA Collaboration, 5the NOvA Collaboration, 6the NOvA Collaboration, 7the NOvA Collaboration, 8the NOvA Collaboration, 9the NOvA Collaboration, 10the NOvA Collaboration, 11the NOvA Collaboration, 12the NOvA Collaboration, 13the NOvA Collaboration, 14the NOvA Collaboration, 15the NOvA Collaboration, 16the NOvA Collaboration, 17the NOvA Collaboration, 18the NOvA Collaboration, 19the NOvA Collaboration, 20the NOvA Collaboration, 21the NOvA Collaboration, 22the NOvA Collaboration, 23the NOvA Collaboration, 24the NOvA Collaboration, 25the NOvA Collaboration, 26the NOvA Collaboration, 27the NOvA Collaboration, 28the NOvA Collaboration, 29the NOvA Collaboration, 30the NOvA Collaboration, 31the NOvA Collaboration, 32the NOvA Collaboration, 33the NOvA Collaboration, 34the NOvA Collaboration, 35the NOvA Collaboration, 36the NOvA Collaboration, 37the NOvA Collaboration, 38the NOvA Collaboration, 39the NOvA Collaboration, 40the NOvA Collaboration, 41the NOvA Collaboration, 42the NOvA Collaboration, 43the NOvA Collaboration, 44the NOvA Collaboration, 45the NOvA Collaboration, 46the NOvA Collaboration, 47the NOvA Collaboration, 48the NOvA Collaboration, 49the NOvA Collaboration, 50the NOvA Collaboration, 51the NOvA Collaboration, 52the NOvA Collaboration, 53the NOvA Collaboration, 54the NOvA Collaboration, 55the NOvA Collaboration, 56the NOvA Collaboration, 57the NOvA Collaboration, 58the NOvA Collaboration, 59the NOvA Collaboration, 60the NOvA Collaboration, 61the NOvA Collaboration, 62the NOvA Collaboration, 63the NOvA Collaboration, 64the NOvA Collaboration, 65the NOvA Collaboration, 66the NOvA Collaboration, 67the NOvA Collaboration, 68the NOvA Collaboration, 69the NOvA Collaboration, 70the NOvA Collaboration, 71the NOvA Collaboration, 72the NOvA Collaboration, 73the NOvA Collaboration, 74the NOvA Collaboration, 75the NOvA Collaboration, 76the NOvA Collaboration, 77the NOvA Collaboration, 78the NOvA Collaboration, 79the NOvA Collaboration, 80the NOvA Collaboration, 81the NOvA Collaboration, 82the NOvA Collaboration, 83the NOvA Collaboration, 84the NOvA Collaboration, 85the NOvA Collaboration, 86the NOvA Collaboration, 87the NOvA Collaboration, 88the NOvA Collaboration, 89the NOvA Collaboration, 90the NOvA Collaboration, 91the NOvA Collaboration, 92the NOvA Collaboration, 93the NOvA Collaboration, 94the NOvA Collaboration, 95the NOvA Collaboration, 96the NOvA Collaboration, 97the NOvA Collaboration, 98the NOvA Collaboration, 99the NOvA Collaboration, 100the NOvA Collaboration, 101the NOvA Collaboration, 102the NOvA Collaboration, 103the NOvA Collaboration, 104the NOvA Collaboration, 105the NOvA Collaboration, 106the NOvA Collaboration, 107the NOvA Collaboration, 108the NOvA Collaboration, 109the NOvA Collaboration, 110the NOvA Collaboration, 111the NOvA Collaboration, 112the NOvA Collaboration, 113the NOvA Collaboration, 114the NOvA Collaboration, 115the NOvA Collaboration, 116the NOvA Collaboration, 117the NOvA Collaboration, 118the NOvA Collaboration, 119the NOvA Collaboration, 120the NOvA Collaboration, 121the NOvA Collaboration, 122the NOvA Collaboration, 123the NOvA Collaboration, 124the NOvA Collaboration, 125the NOvA Collaboration, 126the NOvA Collaboration, 127the NOvA Collaboration, 128the NOvA Collaboration, 129the NOvA Collaboration, 130the NOvA Collaboration, 131the NOvA Collaboration, 132the NOvA Collaboration, 133the NOvA Collaboration, 134the NOvA Collaboration, 135the NOvA Collaboration, 136the NOvA Collaboration, 137the NOvA Collaboration, 138the NOvA Collaboration, 139the NOvA Collaboration, 140the NOvA Collaboration, 141the NOvA Collaboration, 142the NOvA Collaboration, 143the NOvA Collaboration, 144the NOvA Collaboration, 145the NOvA Collaboration, 146the NOvA Collaboration, 147the NOvA Collaboration, 148the NOvA Collaboration, 149the NOvA Collaboration, 150the NOvA Collaboration, 151the NOvA Collaboration, 152the NOvA Collaboration, 153the NOvA Collaboration, 154the NOvA Collaboration, 155the NOvA Collaboration, 156the NOvA Collaboration, 157the NOvA Collaboration, 158the NOvA Collaboration, 159the NOvA Collaboration, 160the NOvA Collaboration, 161the NOvA Collaboration, 162the NOvA Collaboration, 163the NOvA Collaboration, 164the NOvA Collaboration, 165the NOvA Collaboration, 166the NOvA Collaboration, 167the NOvA Collaboration, 168the NOvA Collaboration, 169the NOvA Collaboration, 170the NOvA Collaboration, 171the NOvA Collaboration, 172the NOvA Collaboration, 173the NOvA Collaboration, 174the NOvA Collaboration, 175the NOvA Collaboration, 176the NOvA Collaboration, 177the NOvA Collaboration, 178the NOvA Collaboration, 179the NOvA Collaboration, 180the NOvA Collaboration, 181the NOvA Collaboration, 182the NOvA Collaboration, 183the NOvA Collaboration, 184the NOvA Collaboration, 185the NOvA Collaboration, 186the NOvA Collaboration, 187the NOvA Collaboration, 188the NOvA Collaboration, 189the NOvA Collaboration, 190the NOvA Collaboration, 191the NOvA Collaboration, 192the NOvA Collaboration, 193the NOvA Collaboration, 194the NOvA Collaboration, 195the NOvA Collaboration, 196the NOvA Collaboration, 197the NOvA Collaboration, 198the NOvA Collaboration, 199the NOvA Collaboration, 200the NOvA Collaboration, 201the NOvA Collaboration, 202the NOvA Collaboration, 203the NOvA Collaboration, 204the NOvA Collaboration, 205the NOvA Collaboration, 206the NOvA Collaboration, 207the NOvA Collaboration, 208the NOvA Collaboration, 209the NOvA Collaboration, 210the NOvA Collaboration, 211the NOvA Collaboration, 212the NOvA Collaboration, 213the NOvA Collaboration, 214the NOvA Collaboration, 215the NOvA Collaboration, 216the NOvA Collaboration, 217the NOvA Collaboration, 218the NOvA Collaboration, 219the NOvA Collaboration, 220the NOvA Collaboration, 221the NOvA Collaboration, 222the NOvA Collaboration, 223the NOvA Collaboration, 224the NOvA Collaboration, 225the NOvA Collaboration, 226the NOvA Collaboration, 227the NOvA Collaboration, 228the NOvA Collaboration, 229the NOvA Collaboration, 230the NOvA Collaboration, 231the NOvA Collaboration, 232the NOvA Collaboration, 233the NOvA Collaboration, 234the NOvA Collaboration, 235the NOvA Collaboration, 236the NOvA Collaboration, 237the NOvA Collaboration, 238the NOvA Collaboration, 239the NOvA Collaboration, 240the NOvA Collaboration, 241the NOvA Collaboration, 242the NOvA Collaboration, 243the NOvA Collaboration, 244the NOvA Collaboration, 245the NOvA Collaboration, 246the NOvA Collaboration, 247the NOvA Collaboration, 248the NOvA Collaboration, 249the NOvA Collaboration, 250the NOvA Collaboration, 251the NOvA Collaboration, 252the NOvA Collaboration, 253the NOvA Collaboration, 254the NOvA Collaboration, 255the NOvA Collaboration, 256the NOvA Collaboration, 257the NOvA Collaboration, 258the NOvA Collaboration, 259the NOvA Collaboration, 260the NOvA Collaboration

We report results from the first search for $\nu_\mu\to\nu_e$ transitions by the NOvA experiment. In an exposure equivalent to $2.74\times10^{20}$ protons-on-target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of $0. Read More

2016Jan
Authors: P. Adamson1, C. Ader2, M. Andrews3, N. Anfimov4, I. Anghel5, K. Arms6, E. Arrieta-Diaz7, A. Aurisano8, D. Ayres9, C. Backhouse10, M. Baird11, B. A. Bambah12, K. Bays13, R. Bernstein14, M. Betancourt15, V. Bhatnagar16, B. Bhuyan17, J. Bian18, K. Biery19, T. Blackburn20, V. Bocean21, D. Bogert22, A. Bolshakova23, M. Bowden24, C. Bower25, D. Broemmelsiek26, C. Bromberg27, G. Brunetti28, X. Bu29, A. Butkevich30, D. Capista31, E. Catano-Mur32, T. R. Chase33, S. Childress34, B. C. Choudhary35, B. Chowdhury36, T. E. Coan37, J. A. B. Coelho38, M. Colo39, J. Cooper40, L. Corwin41, D. Cronin-Hennessy42, A. Cunningham43, G. S. Davies44, J. P. Davies45, M. Del Tutto46, P. F. Derwent47, K. N. Deepthi48, D. Demuth49, S. Desai50, G. Deuerling51, A. Devan52, J. Dey53, R. Dharmapalan54, P. Ding55, S. Dixon56, Z. Djurcic57, E. C. Dukes58, H. Duyang59, R. Ehrlich60, G. J. Feldman61, N. Felt62, E. J. Fenyves63, E. Flumerfelt64, S. Foulkes65, M. J. Frank66, W. Freeman67, M. Gabrielyan68, H. R. Gallagher69, M. Gebhard70, T. Ghosh71, W. Gilbert72, A. Giri73, S. Goadhouse74, R. A. Gomes75, L. Goodenough76, M. C. Goodman77, V. Grichine78, N. Grossman79, R. Group80, J. Grudzinski81, V. Guarino82, B. Guo83, A. Habig84, T. Handler85, J. Hartnell86, R. Hatcher87, A. Hatzikoutelis88, K. Heller89, C. Howcroft90, J. Huang91, X. Huang92, J. Hylen93, M. Ishitsuka94, F. Jediny95, C. Jensen96, D. Jensen97, C. Johnson98, H. Jostlein99, G. K. Kafka100, Y. Kamyshkov101, S. M. S. Kasahara102, S. Kasetti103, K. Kephart104, G. Koizumi105, S. Kotelnikov106, I. Kourbanis107, Z. Krahn108, V. Kravtsov109, A. Kreymer110, Ch. Kulenberg111, A. Kumar112, T. Kutnink113, R. Kwarciancy114, J. Kwong115, K. Lang116, A. Lee117, W. M. Lee118, K. Lee119, S. Lein120, J. Liu121, M. Lokajicek122, J. Lozier123, Q. Lu124, P. Lucas125, S. Luchuk126, P. Lukens127, G. Lukhanin128, S. Magill129, K. Maan130, W. A. Mann131, M. L. Marshak132, M. Martens133, J. Martincik134, P. Mason135, K. Matera136, M. Mathis137, V. Matveev138, N. Mayer139, E. McCluskey140, R. Mehdiyev141, H. Merritt142, M. D. Messier143, H. Meyer144, T. Miao145, D. Michael146, S. P. Mikheyev147, W. H. Miller148, S. R. Mishra149, R. Mohanta150, A. Moren151, L. Mualem152, M. Muether153, S. Mufson154, J. Musser155, H. B. Newman156, J. K. Nelson157, E. Niner158, A. Norman159, J. Nowak160, Y. Oksuzian161, A. Olshevskiy162, J. Oliver163, T. Olson164, J. Paley165, P. Pandey166, A. Para167, R. B. Patterson168, G. Pawloski169, N. Pearson170, D. Perevalov171, D. Pershey172, E. Peterson173, R. Petti174, S. Phan-Budd175, L. Piccoli176, A. Pla-Dalmau177, R. K. Plunkett178, R. Poling179, B. Potukuchi180, F. Psihas181, D. Pushka182, X. Qiu183, N. Raddatz184, A. Radovic185, R. A. Rameika186, R. Ray187, B. Rebel188, R. Rechenmacher189, B. Reed190, R. Reilly191, D. Rocco192, D. Rodkin193, K. Ruddick194, R. Rusack195, V. Ryabov196, K. Sachdev197, S. Sahijpal198, H. Sahoo199, O. Samoylov200, M. C. Sanchez201, N. Saoulidou202, P. Schlabach203, J. Schneps204, R. Schroeter205, J. Sepulveda-Quiroz206, P. Shanahan207, B. Sherwood208, A. Sheshukov209, J. Singh210, V. Singh211, A. Smith212, D. Smith213, J. Smolik214, N. Solomey215, A. Sotnikov216, A. Sousa217, K. Soustruznik218, Y. Stenkin219, M. Strait220, L. Suter221, R. L. Talaga222, M. C. Tamsett223, S. Tariq224, P. Tas225, R. J. Tesarek226, R. B. Thayyullathil227, K. Thomsen228, X. Tian229, S. C. Tognini230, R. Toner231, J. Trevor232, G. Tzanakos233, J. Urheim234, P. Vahle235, L. Valerio236, L. Vinton237, T. Vrba238, A. V. Waldron239, B. Wang240, Z. Wang241, A. Weber242, A. Wehmann243, D. Whittington244, N. Wilcer245, R. Wildberger246, D. Wildman247, K. Williams248, S. G. Wojcicki249, K. Wood250, M. Xiao251, T. Xin252, N. Yadav253, S. Yang254, S. Zadorozhnyy255, J. Zalesak256, B. Zamorano257, A. Zhao258, J. Zirnstein259, R. Zwaska260
Affiliations: 1the NOvA Collaboration, 2the NOvA Collaboration, 3the NOvA Collaboration, 4the NOvA Collaboration, 5the NOvA Collaboration, 6the NOvA Collaboration, 7the NOvA Collaboration, 8the NOvA Collaboration, 9the NOvA Collaboration, 10the NOvA Collaboration, 11the NOvA Collaboration, 12the NOvA Collaboration, 13the NOvA Collaboration, 14the NOvA Collaboration, 15the NOvA Collaboration, 16the NOvA Collaboration, 17the NOvA Collaboration, 18the NOvA Collaboration, 19the NOvA Collaboration, 20the NOvA Collaboration, 21the NOvA Collaboration, 22the NOvA Collaboration, 23the NOvA Collaboration, 24the NOvA Collaboration, 25the NOvA Collaboration, 26the NOvA Collaboration, 27the NOvA Collaboration, 28the NOvA Collaboration, 29the NOvA Collaboration, 30the NOvA Collaboration, 31the NOvA Collaboration, 32the NOvA Collaboration, 33the NOvA Collaboration, 34the NOvA Collaboration, 35the NOvA Collaboration, 36the NOvA Collaboration, 37the NOvA Collaboration, 38the NOvA Collaboration, 39the NOvA Collaboration, 40the NOvA Collaboration, 41the NOvA Collaboration, 42the NOvA Collaboration, 43the NOvA Collaboration, 44the NOvA Collaboration, 45the NOvA Collaboration, 46the NOvA Collaboration, 47the NOvA Collaboration, 48the NOvA Collaboration, 49the NOvA Collaboration, 50the NOvA Collaboration, 51the NOvA Collaboration, 52the NOvA Collaboration, 53the NOvA Collaboration, 54the NOvA Collaboration, 55the NOvA Collaboration, 56the NOvA Collaboration, 57the NOvA Collaboration, 58the NOvA Collaboration, 59the NOvA Collaboration, 60the NOvA Collaboration, 61the NOvA Collaboration, 62the NOvA Collaboration, 63the NOvA Collaboration, 64the NOvA Collaboration, 65the NOvA Collaboration, 66the NOvA Collaboration, 67the NOvA Collaboration, 68the NOvA Collaboration, 69the NOvA Collaboration, 70the NOvA Collaboration, 71the NOvA Collaboration, 72the NOvA Collaboration, 73the NOvA Collaboration, 74the NOvA Collaboration, 75the NOvA Collaboration, 76the NOvA Collaboration, 77the NOvA Collaboration, 78the NOvA Collaboration, 79the NOvA Collaboration, 80the NOvA Collaboration, 81the NOvA Collaboration, 82the NOvA Collaboration, 83the NOvA Collaboration, 84the NOvA Collaboration, 85the NOvA Collaboration, 86the NOvA Collaboration, 87the NOvA Collaboration, 88the NOvA Collaboration, 89the NOvA Collaboration, 90the NOvA Collaboration, 91the NOvA Collaboration, 92the NOvA Collaboration, 93the NOvA Collaboration, 94the NOvA Collaboration, 95the NOvA Collaboration, 96the NOvA Collaboration, 97the NOvA Collaboration, 98the NOvA Collaboration, 99the NOvA Collaboration, 100the NOvA Collaboration, 101the NOvA Collaboration, 102the NOvA Collaboration, 103the NOvA Collaboration, 104the NOvA Collaboration, 105the NOvA Collaboration, 106the NOvA Collaboration, 107the NOvA Collaboration, 108the NOvA Collaboration, 109the NOvA Collaboration, 110the NOvA Collaboration, 111the NOvA Collaboration, 112the NOvA Collaboration, 113the NOvA Collaboration, 114the NOvA Collaboration, 115the NOvA Collaboration, 116the NOvA Collaboration, 117the NOvA Collaboration, 118the NOvA Collaboration, 119the NOvA Collaboration, 120the NOvA Collaboration, 121the NOvA Collaboration, 122the NOvA Collaboration, 123the NOvA Collaboration, 124the NOvA Collaboration, 125the NOvA Collaboration, 126the NOvA Collaboration, 127the NOvA Collaboration, 128the NOvA Collaboration, 129the NOvA Collaboration, 130the NOvA Collaboration, 131the NOvA Collaboration, 132the NOvA Collaboration, 133the NOvA Collaboration, 134the NOvA Collaboration, 135the NOvA Collaboration, 136the NOvA Collaboration, 137the NOvA Collaboration, 138the NOvA Collaboration, 139the NOvA Collaboration, 140the NOvA Collaboration, 141the NOvA Collaboration, 142the NOvA Collaboration, 143the NOvA Collaboration, 144the NOvA Collaboration, 145the NOvA Collaboration, 146the NOvA Collaboration, 147the NOvA Collaboration, 148the NOvA Collaboration, 149the NOvA Collaboration, 150the NOvA Collaboration, 151the NOvA Collaboration, 152the NOvA Collaboration, 153the NOvA Collaboration, 154the NOvA Collaboration, 155the NOvA Collaboration, 156the NOvA Collaboration, 157the NOvA Collaboration, 158the NOvA Collaboration, 159the NOvA Collaboration, 160the NOvA Collaboration, 161the NOvA Collaboration, 162the NOvA Collaboration, 163the NOvA Collaboration, 164the NOvA Collaboration, 165the NOvA Collaboration, 166the NOvA Collaboration, 167the NOvA Collaboration, 168the NOvA Collaboration, 169the NOvA Collaboration, 170the NOvA Collaboration, 171the NOvA Collaboration, 172the NOvA Collaboration, 173the NOvA Collaboration, 174the NOvA Collaboration, 175the NOvA Collaboration, 176the NOvA Collaboration, 177the NOvA Collaboration, 178the NOvA Collaboration, 179the NOvA Collaboration, 180the NOvA Collaboration, 181the NOvA Collaboration, 182the NOvA Collaboration, 183the NOvA Collaboration, 184the NOvA Collaboration, 185the NOvA Collaboration, 186the NOvA Collaboration, 187the NOvA Collaboration, 188the NOvA Collaboration, 189the NOvA Collaboration, 190the NOvA Collaboration, 191the NOvA Collaboration, 192the NOvA Collaboration, 193the NOvA Collaboration, 194the NOvA Collaboration, 195the NOvA Collaboration, 196the NOvA Collaboration, 197the NOvA Collaboration, 198the NOvA Collaboration, 199the NOvA Collaboration, 200the NOvA Collaboration, 201the NOvA Collaboration, 202the NOvA Collaboration, 203the NOvA Collaboration, 204the NOvA Collaboration, 205the NOvA Collaboration, 206the NOvA Collaboration, 207the NOvA Collaboration, 208the NOvA Collaboration, 209the NOvA Collaboration, 210the NOvA Collaboration, 211the NOvA Collaboration, 212the NOvA Collaboration, 213the NOvA Collaboration, 214the NOvA Collaboration, 215the NOvA Collaboration, 216the NOvA Collaboration, 217the NOvA Collaboration, 218the NOvA Collaboration, 219the NOvA Collaboration, 220the NOvA Collaboration, 221the NOvA Collaboration, 222the NOvA Collaboration, 223the NOvA Collaboration, 224the NOvA Collaboration, 225the NOvA Collaboration, 226the NOvA Collaboration, 227the NOvA Collaboration, 228the NOvA Collaboration, 229the NOvA Collaboration, 230the NOvA Collaboration, 231the NOvA Collaboration, 232the NOvA Collaboration, 233the NOvA Collaboration, 234the NOvA Collaboration, 235the NOvA Collaboration, 236the NOvA Collaboration, 237the NOvA Collaboration, 238the NOvA Collaboration, 239the NOvA Collaboration, 240the NOvA Collaboration, 241the NOvA Collaboration, 242the NOvA Collaboration, 243the NOvA Collaboration, 244the NOvA Collaboration, 245the NOvA Collaboration, 246the NOvA Collaboration, 247the NOvA Collaboration, 248the NOvA Collaboration, 249the NOvA Collaboration, 250the NOvA Collaboration, 251the NOvA Collaboration, 252the NOvA Collaboration, 253the NOvA Collaboration, 254the NOvA Collaboration, 255the NOvA Collaboration, 256the NOvA Collaboration, 257the NOvA Collaboration, 258the NOvA Collaboration, 259the NOvA Collaboration, 260the NOvA Collaboration

This paper reports the first measurement using the NOvA detectors of $\nu_\mu$ disappearance in a $\nu_\mu$ beam. The analysis uses a 14 kton-equivalent exposure of $2.74 \times 10^{20}$ protons-on-target from the Fermilab NuMI beam. Read More