# M. Carena - Fermilab, University Chicago

## Contact Details

NameM. Carena |
||

AffiliationFermilab, University Chicago |
||

CityChicago |
||

CountryUnited States |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (48) High Energy Physics - Experiment (20) High Energy Physics - Theory (2) Mathematics - Functional Analysis (1) High Energy Astrophysical Phenomena (1) Physics - Accelerator Physics (1) Nuclear Experiment (1) Mathematics - Metric Geometry (1) High Energy Physics - Lattice (1) Nuclear Theory (1) |

## Publications Authored By M. Carena

Heavy scalar and pseudoscalar resonance searches through the $gg\rightarrow S\rightarrow t\bar t$ process are challenging due to the peculiar behavior of the large interference effects with the standard model $t\bar t$ background. Such effects generate non-trivial lineshapes from additional relative phases between the signal and background amplitudes. We provide the analytic expressions for the differential cross sections to understand the interference effects in the heavy scalar signal lineshapes. Read More

Many new physics models contain a neutral scalar resonance that can be predominantly produced via gluon fusion through loops. In such a case, there could be important effects of additional particles, that in turn may hadronize before decaying and form bound states. This interesting possibility may lead to novel signatures with double peaks that can be searched for at the LHC. Read More

Several experiments reported hints for the violation of lepton flavor or lepton flavor universality in processes involving muons. Most prominently, there is the hint for a non-zero rate of the flavor violating Higgs decay $h \to \tau\mu$ at the LHC, as well as the hint for lepton flavor universality violation in rare $B$ meson decays at LHCb. In addition, also the long standing discrepancy in the anomalous magnetic moment of the muon motivates new physics connected to muons. Read More

After the Higgs boson discovery, it is established that the Higgs mechanism explains electroweak symmetry breaking and generates the masses of all particles in the Standard Model, with the possible exception of neutrino masses. The hierarchies among fermion masses and mixing angles remain however unexplained. We propose a new class of two Higgs doublet models in which a flavor symmetry broken at the electroweak scale addresses this problem. Read More

We introduce and explore new heavy Higgs scenarios in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation, which have important phenomenological implications that may be testable at the LHC. For soft supersymmetry-breaking scales M_S above a few TeV and a charged Higgs boson mass M_H+ above a few hundred GeV, new physics effects including those from explicit CP violation decouple from the light Higgs boson sector. However, such effects can significantly alter the phenomenology of the heavy Higgs bosons while still being consistent with constraints from low-energy observables, for instance electric dipole moments. Read More

The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive region of the NMSSM parameter space, corresponding to the "alignment limit" in which one of the neutral Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum expectation value, the observed Higgs boson is predicted to have Standard-Model-like properties. We derive analytical expressions for the alignment conditions and show that they point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale. Read More

We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. Read More

Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the Minimal Supersymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for "alignment independent of decoupling", where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the non-standard Higgs boson masses. Read More

Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS$_5$ space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the $H\to\gamma\gamma$ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. Read More

We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) x U(1) gauge interactions. Read More

We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) -> SO(4) symmetry breaking pattern, assuming the partial compositeness paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. Read More

Let $(X,d,\mu)$ be a space of homogeneous type. In this note we study the relationship between two types of $s$-sets: relative to a distance and relative to a measure. We find a condition on a closed subset $F$ of $X$ under which we have that $F$ is $s$-set relative to the measure $\mu$ if and only if $F$ is $s$-set relative to $\delta$. Read More

In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the $Z$ boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. Read More

We study extensions of the standard model by one generation of vector-like leptons with non-standard hypercharges, which allow for a sizable modification of the h -> gamma gamma decay rate for new lepton masses in the 300 GeV - 1 TeV range. We analyze vaccum stability implications for different hypercharges. Effects in h -> Z gamma are typically much smaller than in h -> gamma gamma, but distinct among the considered hypercharge assignments. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

**Authors:**Andreas S. Kronfeld

^{1}, Robert S. Tschirhart

^{2}, Usama Al-Binni, Wolfgang Altmannshofer, Charles Ankenbrandt, Kaladi Babu, Sunanda Banerjee, Matthew Bass, Brian Batell, David V. Baxter, Zurab Berezhiani, Marc Bergevin, Robert Bernstein, Sudeb Bhattacharya, Mary Bishai, Thomas Blum, S. Alex Bogacz, Stephen J. Brice, Joachim Brod, Alan Bross, Michael Buchoff, Thomas W. Burgess, Marcela Carena, Luis A. Castellanos, Subhasis Chattopadhyay, Mu-Chun Chen, Daniel Cherdack, Norman H. Christ, Tim Chupp, Vincenzo Cirigliano, Pilar Coloma, Christopher E. Coppola, Ramanath Cowsik, J. Allen Crabtree, André de Gouvêa, Jean-Pierre Delahaye, Dmitri Denisov, Patrick deNiverville, Ranjan Dharmapalan, Markus Diefenthaler, Alexander Dolgov, Georgi Dvali, Estia Eichten, Jürgen Engelfried, Phillip D. Ferguson, Tony Gabriel, Avraham Gal, Franz Gallmeier, Kenneth S. Ganezer, Susan Gardner, Douglas Glenzinski, Stephen Godfrey, Elena S. Golubeva, Stefania Gori, Van B. Graves, Geoffrey Greene, Cory L. Griffard, Ulrich Haisch, Thomas Handler, Brandon Hartfiel, Athanasios Hatzikoutelis, Ayman Hawari, Lawrence Heilbronn, James E. Hill, Patrick Huber, David E. Jaffe, Xiaodong Jiang, Christian Johnson, Yuri Kamyshkov, Daniel M. Kaplan, Boris Kerbikov, Brendan Kiburg, Harold G. Kirk, Andreas Klein, Kyle Knoepfel, Boris Kopeliovich, Vladimir Kopeliovich, Joachim Kopp, Wolfgang Korsch, Graham Kribs, Ronald Lipton, Chen-Yu Liu, Wolfgang Lorenzon, Zheng-Tian Lu, Naomi C. R. Makins, David McKeen, Geoffrey Mills, Michael Mocko, Rabindra Mohapatra, Nikolai V. Mokhov, Guenter Muhrer, Pieter Mumm, David Neuffer, Lev Okun, Mark A. Palmer, Robert Palmer, Robert W. Pattie Jr., David G. Phillips II, Kevin Pitts, Maxim Pospelov, Vitaly S. Pronskikh, Chris Quigg, Erik Ramberg, Amlan Ray, Paul E. Reimer, David G. Richards, Adam Ritz, Amit Roy, Arthur Ruggles, Robert Ryne, Utpal Sarkar, Andy Saunders, Yannis K. Semertzidis, Anatoly Serebrov, Hirohiko Shimizu, Robert Shrock, Arindam K. Sikdar, Pavel V. Snopok, William M. Snow, Aria Soha, Stefan Spanier, Sergei Striganov, Zhaowen Tang, Lawrence Townsend, Jon Urheim, Arkady Vainshtein, Richard Van de Water, Ruth S. Van de Water, Richard J. Van Kooten, Bernard Wehring, William C. Wester III, Lisa Whitehead, Robert J. Wilson, Elizabeth Worcester, Albert R. Young, Geralyn Zeller

**Affiliations:**

^{1}Editors,

^{2}Editors

Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations. Read More

Let $(X,d,\mu)$ be an Ahlfors metric measure space. We give sufficient conditions on a closed set $F\subseteq X$ and on a real number $\beta$ in such a way that $d(x,F)^\beta$ becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals. Read More

The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymmetric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. Read More

A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). Read More

Current Higgs data at the Large Hadron Collider is compatible with a SM signal at the 2$\sigma$ level, but the central value of the signal strength in the diphoton channel is enhanced with respect to the SM expectation. If the enhancement resides in the diphoton partial decay width, the data could be accommodated in the Minimally Supersymmetric Standard Model (MSSM) with highly mixed light staus. We revisit the issue of vacuum instability induced by large mixing in the stau sector, including effects of a radiatively-corrected tau Yukawa coupling. Read More

We study the minimal supersymmetric standard model (MSSM) with minimal flavor violation (MFV), imposing constraints from flavor physics observables and MSSM Higgs searches, in light of the recent discovery of a 125 GeV Higgs boson by ATLAS and CMS. We analyze the electroweak vacuum stability conditions to further restrict the MSSM parameter space. In addition, a connection to ultraviolet physics is shown via an implementation of renormalization group running, which determines the TeV-scale spectrum from a small set of minimal supergravity parameters. Read More

We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. Read More

Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Read More

Motivated by recent results from Higgs searches at the Large Hadron Collider, we consider possibilities to enhance the diphoton decay width of the Higgs boson over the Standard Model expectation, without modifying either its production rate or the partial widths in the WW and ZZ channels. Studying effects of new charged scalars, fermions and vector bosons, we find that significant variations in the diphoton width may be possible if the new particles have light masses of the order of a few hundred GeV and sizeable couplings to the Higgs boson. Such couplings could arise naturally if there is large mass mixing between two charged particles that is induced by the Higgs vacuum expectation value. Read More

The LHC has started to constrain supersymmetry-breaking parameters by setting bounds on possible colored particles at the weak scale. Moreover, constraints from Higgs physics, flavor physics, the anomalous magnetic moment of the muon, as well as from searches at LEP and the Tevatron have set additional bounds on these parameters. Renormalization Group Invariants (RGIs) provide a very useful way of representing the allowed parameter space by making direct connection with the values of these parameters at the messenger scale. Read More

Recently, an excess of events consistent with a Higgs boson with mass of about 125 GeV was reported by the CMS and ATLAS experiments. This Higgs boson mass is consistent with the values that may be obtained in minimal supersymmetric extensions of the Standard Model (SM), with both stop masses less than a TeV and large mixing. The apparently enhanced photon production rate associated with this potential Higgs signal may be the result of light staus with large mixing. Read More

**Authors:**Marcela Carena

^{1}, Sandro Casagrande

^{2}, Florian Goertz

^{3}, Ulrich Haisch

^{4}, Matthias Neubert

^{5}

**Affiliations:**

^{1}Fermilab, U. Chicago,

^{2}TU Munich,

^{3}ETH Zurich,

^{4}Oxford U.,

^{5}Mainz U.

Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg-->h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in terms of a simple function of the fundamental (5D) Yukawa matrices. Read More

In a variety of well motivated models, such as two Higgs Doublet Models (2HDMs) and the Minimal Supersymmetric Standard Model (MSSM), there are neutral Higgs bosons that have significantly enhanced couplings to b-quarks and tau leptons in comparison to those of the SM Higgs. These so called non-standard Higgs bosons could be copiously produced at the LHC in association with b quarks, and subsequently decay into b-quark pairs. However, this production channel suffers from large irreducible QCD backgrounds. Read More

We consider the possibility of a Standard Model (SM)-like Higgs in the context of the Minimal Supersymmetric Standard Model (MSSM), with a mass of about 125 GeV and with a production times decay rate into two photons which is similar or somewhat larger than the SM one. The relatively large value of the SM-like Higgs mass demands stops in the several hundred GeV mass range with somewhat large mixing, or a large hierarchy between the two stop masses in the case that one of the two stops is light. We find that, in general, if the heaviest stop mass is smaller than a few TeV, the rate of gluon fusion production of Higgs bosons decaying into two photons tends to be somewhat suppressed with respect to the SM one in this region of parameters. Read More

We consider the Higgs sector in extensions of the Minimal Supersymmetric Standard Model by higher-dimension operators in the superpotential and the K\"ahler potential, in the context of Higgs searches at the LHC 7 TeV run. Such an effective field theory (EFT) approach, also referred to as BMSSM, allows for a model-independent description that may correspond to the combined effects of additional supersymmetric sectors, such as heavy singlets, triplets or gauge bosons, in which the supersymmetry breaking mass splittings can be treated as a perturbation. We consider the current LHC dataset, based on about $1-2 {\rm fb}^{-1}$ of data to set exclusion limits on a large class of BMSSM models. Read More

**Affiliations:**

^{1}Fermi National Accelerator Laboratory, Batavia, IL USA,

^{2}Fermi National Accelerator Laboratory, Batavia, IL USA,

^{3}University of Chicago, Chicago, IL USA

**Category:**High Energy Physics - Phenomenology

We analyze the stability of the vacuum and the electroweak phase transition in the NMSSM close to the Peccei-Quinn symmetry limit. This limit contains light Dark Matter (DM) particles with a mass significantly smaller than the weak scale and also light CP-even and CP-odd Higgs bosons. Such light particles lead to a consistent relic density and facilitate a large spin-independent direct DM detection cross section, that may accommodate the recently reported signatures at the DAMA and CoGeNT experiments. Read More

We study a minimal flavor violating extension of the MSSM, where higher dimensional operators in the Kahler potential induce tree level non-holomorphic Higgs couplings that are controlled by the scale of the physics beyond the MSSM, and analyze their possible impact on CP violation in Bs and Bd mixing. We consider results on the time dependent CP asymmetries in Bs --> psi phi and Bs --> psi f_0 from LHCb, in Bs --> psi phi from CDF and D0 and in B --> psi K_S from the B factories as well as the measurement of an anomalous like-sign dimuon charge asymmetry at D0. Taking into account the stringent bounds on the branching ratio of the rare Bs --> mu+mu- decay, we investigate to which extent the framework allows to address the observed (2-3)sigma discrepancies in fits of the unitarity triangle. Read More

The search for the Higgs boson is entering a decisive phase. The Large Hadron Collider experiments have collected more than 1 fb$^{-1}$ of data and are now capable of efficiently probing the high Higgs mass region, $m_H > 140$ GeV. The low mass region is more challenging at the LHC, but if the Higgs has Standard Model (SM)-like properties, the LHC should find evidence for it by the end of next year. Read More

We study an extension of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), considering the effects of new degrees of freedom at the TeV scale, and allowing for sources of CP violation beyond the MSSM (BMSSM). We analyze the impact of the BMSSM sources of CP violation on the Higgs collider phenomenology and on low energy flavor and CP violating observables. We identify distinct Higgs collider signatures that cannot be realized, either in the case without CP violating phases or in the CP violating MSSM, and investigate the prospects to probe them at the Tevatron and the LHC. Read More

We show that, the result recently reported by the CDF collaboration showing an excess in the invariant mass distribution of jet pairs produced in association with a W-boson can be explained by a simple extension of the Standard Model (SM) with an additional quasi-inert Higgs doublet. The two additional neutral Higgs states H^0 and A^0 have a mass of about 150 GeV and decay into a pair of jets. W^\pm H^0/A^0 pairs are produced from the decay of the heavier charged Higgs boson H^\pm. Read More

New vector-like quarks can have sizable couplings to first generation quarks without conflicting with current experimental constraints. The coupling with valence quarks and unique kinematics make single production the optimal discovery process. We perform a model-independent analysis of the discovery reach at the Large Hadron Collider for new vector-like quarks considering single production and subsequent decays via electroweak interactions. Read More

A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Read More

We study Renormalization Group invariant (RGI) quantities in the Minimal Supersymmetric Standard Model and show that they are a powerful and simple instrument for testing high scale models of supersymmetry (SUSY)-breaking. For illustration, we analyze the frameworks of minimal and general gauge mediated (MGM and GGM) SUSY-breaking, with additional arbitrary soft Higgs mass parameters at the messenger scale. We show that if a gaugino and two first generation sfermion soft masses are determined at the LHC, the RGIs lead to MGM sum rules that yield accurate predictions for the other gaugino and first generation soft masses. Read More

We consider extensions of the Minimal Supersymmetric Standard Model (MSSM) where the extra degrees of freedom interact weakly with the Higgs sector. These models allow to relax the tension between the lower bound on the lightest CP even Higgs mass from direct LEP searches and the theoretical upper bound of the MSSM. We study the beyond MSSM (BMSSM) effects via an effective field-theory approach, assuming that the MSSM is valid up to a heavy physics scale M. Read More

If collider experiments demonstrate that the Minimal Supersymmetric Standard Model (MSSM) is a good description of nature at the weak scale, the experimental priority will be the precise determination of superpartner masses. These masses are governed by the weak scale values of the soft supersymmetry (SUSY)-breaking parameters, which are in turn highly dependent on the SUSY-breaking scheme present at high scales. It is therefore of great interest to find patterns in the soft parameters that can distinguish different high scale SUSY-breaking structures, identify the scale at which the breaking is communicated to the visible sector, and determine the soft breaking parameters at that scale. Read More

We study extensions of the Minimal Supersymmetric Standard Model (MSSM) with new degrees of freedom that couple sizably to the MSSM Higgs sector and lie in the TeV range. After integrating out the physics at the TeV scale, the resulting Higgs spectrum can significantly differ from typical supersymmetric scenarios, thereby providing a window Beyond the MSSM (BMSSM). Taking into account current LEP and Tevatron constraints, we perform an in-depth analysis of the Higgs collider phenomenology and explore distinctive characteristics of our scenario with respect to both the Standard Model and the MSSM. Read More

**Authors:**P. Nath, B. D. Nelson, H. Davoudiasl, B. Dutta, D. Feldman, Z. Liu, T. Han, P. Langacker, R. Mohapatra, J. Valle, A. Pilaftsis, D. Zerwas, S. AbdusSalam, C. Adam-Bourdarios, J. A. Aguilar-Saavedra, B. Allanach, B. Altunkaynak, L. A. Anchordoqui, H. Baer, B. Bajc, O. Buchmueller, M. Carena, R. Cavanaugh, S. Chang, K. Choi, C. Csaki, S. Dawson, F. de Campos, A. De Roeck, M. Duhrssen, O. J. P. Eboli, J. R. Ellis, H. Flacher, H. Goldberg, W. Grimus, U. Haisch, S. Heinemeyer, M. Hirsch, M. Holmes, T. Ibrahim, G. Isidori, G. Kane, K. Kong, R. Lafaye, G. Landsberg, L. Lavoura, J. S. Lee, S. J. Lee, M. Lisanti, D. Lust, M. B. Magro, R. Mahbubani, M. Malinsky, F. Maltoni, S. Morisi, M. M. Muhlleitner, B. Mukhopadhyaya, M. Neubert, K. A. Olive, G. Perez, P. Fileviez Perez, T. Plehn, E. Ponton, W. Porod, F. Quevedo, M. Rauch, D. Restrepo, T. G. Rizzo, J. C. Romao, F. J. Ronga, J. Santiago, J. Schechter, G. Senjanovic, J. Shao, M. Spira, S. Stieberger, Z. Sullivan, T. M. P. Tait, X. Tata, T. R. Taylor, M. Toharia, J. Wacker, C. E. M. Wagner, L. -T. Wang, G. Weiglein, D. Zeppenfeld, K. Zurek

**Category:**High Energy Physics - Phenomenology

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Read More

We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. Read More

**Authors:**A. De Roeck, J. Ellis, C. Grojean, S. Heinemeyer, K. Jakobs, G. Weiglein, J. Wells, G. Azuelos, S. Dawson, B. Gripaios, T. Han, J. Hewett, M. Lancaster, C. Mariotti, F. Moortgat, G. Moortgat-Pick, G. Polesello, S. Riemann, M. Schumacher, K. Assamagan, P. Bechtle, M. Carena, G. Chachamis, K. F. Chen, S. De Curtis, K. Desch, M. Dittmar, H. Dreiner, M. Dührssen, B. Foster, M. T. Frandsen, A. Giammanco, R. Godbole, P. Govoni, J. Gunion, W. Hollik, W. S. Hou, G. Isidori, A. Juste, J. Kalinowski, A. Korytov, E. Kou, S. Kraml, M. Krawczyk, A. Martin, D. Milstead, V. Morton-Thurtle, K. Moenig, B. Mele, E. Ozcan, M. Pieri, T. Plehn, L. Reina, E. Richter-Was, T. Rizzo, K. Rolbiecki, F. Sannino, M. Schram, J. Smillie, S. Sultansoy, J. Tattersall, P. Uwer, B. Webber, P. Wienemann

Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. Read More

A dilaton could be the dominant messenger between Standard Model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. Read More

We examine whether the cosmic ray positron excess observed by PAMELA can be explained by neutralino annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The main dark matter annihilation products are the lightest CP-even scalar h1 plus the lightest CP-odd scalar a1, with the a1 decaying into two muons. The energetic positrons needed to explain PAMELA are thus obtained in the NMSSM simply from kinematics. Read More

Gauge Higgs Unification in Warped Extra Dimensions provides an attractive solution to the hierarchy problem. The extension of the Standard Model gauge symmetry to $SO(5)xU(1)_X$ allows the incorporation of the custodial symmetry $SU(2)_R$ plus a Higgs boson doublet with the right quantum numbers under the gauge group. In the minimal model, the Higgs mass is in the range 110-150 GeV, while a light Kaluza Klein (KK) excitation of the top quark appears in the spectrum, providing agreement with precision electroweak measurements and a possible test of the model at a high luminosity LHC. Read More

In this paper we explore the constraints from B-physics observables in SUSY models of Minimal Flavor Violation, in the large tan beta regime, for both low and high scale supersymmetry breaking scenarios. We find that the rare B-decays b -> s gamma and B_s -> mu+ mu- can be quite sensitive to the scale M at which supersymmetry breaking is communicated to the visible sector. In the case of high scale supersymmetry breaking, we show that the additional gluino contribution to the b -> s gamma and B_s -> mu+ mu- rare decay rates can be significant for large tan beta, mu and M_3. Read More

Electroweak baryogenesis provides an attractive explanation of the origin of the matter-antimatter asymmetry that relies on physics at the weak scale and thus it is testable at present and near future high-energy physics experiments. Although this scenario may not be realized within the Standard Model, it can be accommodated within the MSSM provided there are new CP-violating phases and the lightest stop mass is smaller than the top-quark mass. In this work we provide an evaluation of the values of the stop (m_{\tilde t}) and Higgs (m_H) masses consistent with the requirements of electroweak baryogenesis based on an analysis that makes use of the renormalization group improved Higgs and stop potentials, and including the dominant two-loop effects at high temperature. Read More

We propose a scenario in which the Planck scale is dynamically linked to the electroweak scale induced by top condensation. The standard model field content, without the Higgs, is promoted to a 5D warped background. There is also an additional 5D fermion with the quantum numbers of the right-handed top. Read More