Luke F. Roberts

Luke F. Roberts
Are you Luke F. Roberts?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Luke F. Roberts
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Astrophysical Phenomena (19)
 
General Relativity and Quantum Cosmology (7)
 
Nuclear Theory (4)
 
Cosmology and Nongalactic Astrophysics (1)
 
Astrophysics of Galaxies (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By Luke F. Roberts

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing $\sim 8000$ species. Read More

We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly-rotating, strongly magnetized proto-neutron stars for which the magnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the proto-magnetar wind trajectories calculated by Vlasov et al 2014 through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the proto-neutron star cooling phase. Although we do not find a successful second or third peak r-process for any rotation period P, we show that proto-magnetars with P around 1-5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of 100-1000). Read More

We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency (with the exception of possible black-hole formation effects). Read More

We investigate the ejecta from black hole - neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of $r$-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. Read More

After a successful core collapse supernova (CCSN) explosion, a hot dense proto-neutron star (PNS) is left as a remnant. Over a time of twenty or so seconds, this PNS emits the majority of the neutrinos that come from the CCSN, contracts, and loses most of its lepton number. This is the process by which all neutron stars in our galaxy are likely born. Read More

We derive the charged current absorption rate of electron and anti-electron neutrinos in dense matter using a fully relativistic approach valid at arbitrary matter degeneracy. We include mean field energy shifts due to nuclear interactions and the corrections due to weak magnetism. The rates are derived both from the familiar Fermi's Golden Rule, and from the techniques of finite temperature field theory, and shown to be equivalent. Read More

Binary neutron star mergers are promising sources of gravitational waves for ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by these mergers may also be the main source of r-process elements in the Universe, while radioactive decays in the ejecta can power bright electromagnetic post-merger signals. Neutrino-matter interactions play a critical role in the evolution of the composition of the ejected material, which significantly impacts the outcome of nucleosynthesis and the properties of the associated electromagnetic signal. Read More

We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_\odot$ progenitor in full unconstrained 3D and in octant symmetry for $\gtrsim$$ 380\,\mathrm{ms}$. Read More

During the merger of a black hole and a neutron star, baryonic mass can become unbound from the system. Because the ejected material is extremely neutron-rich, the r-process rapidly synthesizes heavy nuclides as the material expands and cools. In this work, we map general relativistic models of black hole-neutron star (BHNS) mergers into a Newtonian smoothed particle hydrodynamics (SPH) code and follow the evolution of the thermodynamics and morphology of the ejecta until the outflows become homologous. Read More

We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. Read More

We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. Read More

Magnetohydrodynamic (MHD) turbulence is of key importance in many high-energy astrophysical systems, including black-hole accretion disks, protoplanetary disks, neutron stars, and stellar interiors. MHD instabilities can amplify local magnetic field strength over very short time scales, but it is an open question whether this can result in the creation of a large scale ordered and dynamically relevant field. Specifically, the magnetorotational instability (MRI) has been suggested as a mechanism to grow magnetar-strength magnetic field ($\gtrsim 10^{15}\, \mathrm{G}$) and magnetorotationally power the explosion of a rotating massive star. Read More

Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients, and radio emission. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and post-merger gravitational wave signals and their neutrinos and electromagnetic counterparts. Read More

r-Process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. Read More

We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1. Read More

Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. Read More

Previous work on neutrino emission from proto-neutron stars which employed full solutions of the Boltzmann equation showed that the average energies of emitted electron neutrinos and antineutrinos are closer to one another than predicted by older, more approximate work. This in turn implied that the neutrino driven wind is proton rich during its entire life, precluding $r$-process nucleosynthesis and the synthesis of Sr, Y, and Zr. This work relied on charged current neutrino interaction rates that are appropriate for a free nucleon gas. Read More

A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. Read More

We model neutrino emission from a newly born neutron star subsequent to a supernova explosion to study its sensitivity to the equation of state, neutrino opacities, and convective instabilities at high baryon density. We find the time period and spatial extent over which convection operates is sensitive to the behavior of the nuclear symmetry energy at and above nuclear density. When convection ends within the proto-neutron star, there is a break in the predicted neutrino emission that may be clearly observable. Read More

The possibility that long tidal tails formed during compact object mergers may power optical transients through the decay of freshly synthesized r-process material is investigated. Precise modeling of the merger dynamics allows for a realistic determination of the thermodynamic conditions in the ejected debris. The results of hydrodynamic and full nuclear network calculations are combined to calculate the resultant r-process abundances and the heating of the material by their decays. Read More