Luis Tenorio

Luis Tenorio
Are you Luis Tenorio?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Luis Tenorio
Affiliation
Location

Pubs By Year

Pub Categories

 
Statistics - Methodology (3)
 
Mathematics - Numerical Analysis (3)
 
Statistics - Computation (2)
 
Statistics - Machine Learning (1)
 
Computer Science - Numerical Analysis (1)

Publications Authored By Luis Tenorio

We describe stochastic Newton and stochastic quasi-Newton approaches to efficiently solve large linear least-squares problems where the very large data sets present a significant computational burden (e.g., the size may exceed computer memory or data are collected in real-time). Read More

We propose optimal dimensionality reduction techniques for the solution of goal-oriented linear-Gaussian inverse problems, where the quantity of interest (QoI) is a function of the inversion parameters. These approximations are suitable for large-scale applications. In particular, we study the approximation of the posterior covariance of the QoI as a low-rank negative update of its prior covariance, and prove optimality of this update with respect to the natural geodesic distance on the manifold of symmetric positive definite matrices. Read More

We present a local density estimator based on first order statistics. To estimate the density at a point, $x$, the original sample is divided into subsets and the average minimum sample distance to $x$ over all such subsets is used to define the density estimate at $x$. The tuning parameter is thus the number of subsets instead of the typical bandwidth of kernel or histogram-based density estimators. Read More

In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. Read More