# L. Yuan - HKS - JLab E05-115 and E01-001 - Collaborations

## Contact Details

NameL. Yuan |
||

AffiliationHKS - JLab E05-115 and E01-001 - Collaborations |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesNuclear Experiment (13) Computer Science - Computer Vision and Pattern Recognition (6) Mathematics - Rings and Algebras (6) Physics - Optics (6) Mathematics - Probability (6) Mathematics - Combinatorics (5) Mathematics - Mathematical Physics (3) Mathematical Physics (3) High Energy Physics - Experiment (3) Physics - Mesoscopic Systems and Quantum Hall Effect (3) Statistics - Machine Learning (2) Mathematics - Quantum Algebra (2) Nuclear Theory (2) Mathematics - Differential Geometry (2) Mathematics - Representation Theory (2) Mathematics - Functional Analysis (1) Quantum Physics (1) High Energy Physics - Phenomenology (1) Mathematics - Metric Geometry (1) Physics - Fluid Dynamics (1) Physics - Geophysics (1) Physics - Computational Physics (1) Computer Science - Graphics (1) Quantitative Biology - Populations and Evolution (1) |

## Publications Authored By L. Yuan

We propose a new technique for visual attribute transfer across images that may have very different appearance but have perceptually similar semantic structure. By visual attribute transfer, we mean transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could be that of a painting or a sketch while the other is a photo of a real scene, and both depict the same type of scene. Read More

Associating image regions with text queries has been recently explored as a new way to bridge visual and linguistic representations. A few pioneering approaches have been proposed based on recurrent neural language models trained generatively (e.g. Read More

Extending state-of-the-art object detectors from image to video is challenging. The accuracy of detection suffers from degenerated object appearances in videos, e.g. Read More

We propose StyleBank, which is composed of multiple convolution filter banks and each filter bank explicitly represents one style, for neural image style transfer. To transfer an image to a specific style, the corresponding filter bank is operated on top of the intermediate feature embedding produced by a single auto-encoder. The StyleBank and the auto-encoder are jointly learnt, where the learning is conducted in such a way that the auto-encoder does not encode any style information thanks to the flexibility introduced by the explicit filter bank representation. Read More

Training a feed-forward network for fast neural style transfer of images is proven to be successful. However, the naive extension to process video frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near real-time. Read More

The Erd\H{o}s-S\'{o}s Conjecture states that every graph with average degree more than $k-2$ contains all trees of order $k$ as subgraphs. In this paper, we consider a variation of the above conjecture: studying the maximum size of an $(n,m)$-bipartite graph which does not contain all $(k,l)$-bipartite trees for given integers $n\ge m$ and $k\ge l$. In particular, we determine that the maximum size of an $(n,m)$-bipartite graph which does not contain all $(n,m)$-bipartite trees as subgraphs (or all $(k,2)$-bipartite trees as subgraphs, respectively). Read More

We theoretically demonstrate non-trivial topological effects for a probe field in a Raman medium undergoing molecular modulation processes. The medium is driven by two non-collinear pump beams. We show that the angle between the pumps is related to an effective gauge potential and an effective magnetic field for the probe field in the synthetic space consisting of a synthetic frequency dimension and a spatial dimension. Read More

The purpose of this paper is to extend the cohomology and conformal derivation theories of the classical Lie conformal algebras to Lie conformal superalgebras. Firstly, we construct the semidirect product of a Lie conformal superalgebra and its conformal module, and study derivations of this semidirect product. Secondly, we develop cohomology theory of Lie conformal superalgebras and discuss some applications to the study of deformations of Lie conformal superalgebras. Read More

Deep convolutional neutral networks have achieved great success on image recognition tasks. Yet, it is non-trivial to transfer the state-of-the-art image recognition networks to videos as per-frame evaluation is too slow and unaffordable. We present deep feature flow, a fast and accurate framework for video recognition. Read More

The Tur\'{a}n number of a graph $H$, $ex(n,H)$, is the maximum number of edges in any graph of order $n$ which does not contain $H$ as a subgraph. Lidick\'{y}, Liu and Palmer determined $ex(n, F_m)$ for $n$ sufficiently large and proved that the extremal graph is unique, where $F_m$ is disjoint paths of $P_{k_1}, \ldots, P_{k_m}$ [Lidick\'{y},B., Liu,H. Read More

**Authors:**X. Yan, K. Allada, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, C. Dutta, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Huang, H. F Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, J. Katich, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, T. Liu, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. Munoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. -C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, X. Qian, Y. Qiang, A. Rakhman, R. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Sirca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, W. A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, Y. Wang, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, Y. X. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

**Category:**Nuclear Experiment

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}\pi^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0. Read More

The purpose of this paper is to extend the cohomology and conformal derivation theories of the classical Lie conformal algebras to Hom-Lie conformal algebras. In this paper, we develop cohomology theory of Hom-Lie conformal algebras and discuss some applications to the study of deformations of regular Hom-Lie conformal algebras. Also, we introduce $\alpha^k$-derivations of multiplicative Hom-Lie conformal algebras and study their properties. Read More

**Authors:**T. Gogami

^{1}, C. Chen

^{2}, D. Kawama

^{3}, P. Achenbach

^{4}, A. Ahmidouch

^{5}, I. Albayrak

^{6}, D. Androic

^{7}, A. Asaturyan

^{8}, R. Asaturyan

^{9}, O. Ates

^{10}, P. Baturin

^{11}, R. Badui

^{12}, W. Boeglin

^{13}, J. Bono

^{14}, E. Brash

^{15}, P. Carter

^{16}, A. Chiba

^{17}, E. Christy

^{18}, S. Danagoulian

^{19}, R. De Leo

^{20}, D. Doi

^{21}, M. Elaasar

^{22}, R. Ent

^{23}, Y. Fujii

^{24}, M. Fujita

^{25}, M. Furic

^{26}, M. Gabrielyan

^{27}, L. Gan

^{28}, F. Garibaldi

^{29}, D. Gaskell

^{30}, A. Gasparian

^{31}, Y. Han

^{32}, O. Hashimoto

^{33}, T. Horn

^{34}, B. Hu

^{35}, Ed. V. Hungerford

^{36}, M. Jones

^{37}, H. Kanda

^{38}, M. Kaneta

^{39}, S. Kato

^{40}, M. Kawai

^{41}, H. Khanal

^{42}, M. Kohl

^{43}, A. Liyanage

^{44}, W. Luo

^{45}, K. Maeda

^{46}, A. Margaryan

^{47}, P. Markowitz

^{48}, T. Maruta

^{49}, A. Matsumura

^{50}, V. Maxwell

^{51}, A. Mkrtchyan

^{52}, H. Mkrtchyan

^{53}, S. Nagao

^{54}, S. N. Nakamura

^{55}, A. Narayan

^{56}, C. Neville

^{57}, G. Niculescu

^{58}, M. I. Niculescu

^{59}, A. Nunez

^{60}, Nuruzzaman

^{61}, Y. Okayasu

^{62}, T. Petkovic

^{63}, J. Pochodzalla

^{64}, X. Qiu

^{65}, J. Reinhold

^{66}, V. M. Rodriguez

^{67}, C. Samanta

^{68}, B. Sawatzky

^{69}, T. Seva

^{70}, A. Shichijo

^{71}, V. Tadevosyan

^{72}, L. Tang

^{73}, N. Taniya

^{74}, K. Tsukada

^{75}, M. Veilleux

^{76}, W. Vulcan

^{77}, F. R. Wesselmann

^{78}, S. A. Wood

^{79}, T. Yamamoto

^{80}, L. Ya

^{81}, Z. Ye

^{82}, K. Yokota

^{83}, L. Yuan

^{84}, S. Zhamkochyan

^{85}, L. Zhu

^{86}

**Affiliations:**

^{1}HKS,

^{2}HKS,

^{3}HKS,

^{4}HKS,

^{5}HKS,

^{6}HKS,

^{7}HKS,

^{8}HKS,

^{9}HKS,

^{10}HKS,

^{11}HKS,

^{12}HKS,

^{13}HKS,

^{14}HKS,

^{15}HKS,

^{16}HKS,

^{17}HKS,

^{18}HKS,

^{19}HKS,

^{20}HKS,

^{21}HKS,

^{22}HKS,

^{23}HKS,

^{24}HKS,

^{25}HKS,

^{26}HKS,

^{27}HKS,

^{28}HKS,

^{29}HKS,

^{30}HKS,

^{31}HKS,

^{32}HKS,

^{33}HKS,

^{34}HKS,

^{35}HKS,

^{36}HKS,

^{37}HKS,

^{38}HKS,

^{39}HKS,

^{40}HKS,

^{41}HKS,

^{42}HKS,

^{43}HKS,

^{44}HKS,

^{45}HKS,

^{46}HKS,

^{47}HKS,

^{48}HKS,

^{49}HKS,

^{50}HKS,

^{51}HKS,

^{52}HKS,

^{53}HKS,

^{54}HKS,

^{55}HKS,

^{56}HKS,

^{57}HKS,

^{58}HKS,

^{59}HKS,

^{60}HKS,

^{61}HKS,

^{62}HKS,

^{63}HKS,

^{64}HKS,

^{65}HKS,

^{66}HKS,

^{67}HKS,

^{68}HKS,

^{69}HKS,

^{70}HKS,

^{71}HKS,

^{72}HKS,

^{73}HKS,

^{74}HKS,

^{75}HKS,

^{76}HKS,

^{77}HKS,

^{78}HKS,

^{79}HKS,

^{80}HKS,

^{81}HKS,

^{82}HKS,

^{83}HKS,

^{84}HKS,

^{85}HKS,

^{86}HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

**Authors:**V. Tvaskis, A. Tvaskis, I. Niculescu, D. Abbott, G. S. Adams, A. Afanasev, A. Ahmidouch, T. Angelescu, J. Arrington, R. Asaturyan, S. Avery, O. K. Baker, N. Benmouna, B. L. Berman, A. Biselli, H. P. Blok, W. U. Boeglin, P. E. Bosted, E. Brash, H. Breuer, G. Chang, N. Chant, M. E. Christy, S. H. Connell, M. M. Dalton, S. Danagoulian, D. Day, T. Dodario, J. A. Dunne, D. Dutta, N. El Khayari, R. Ent, H. C. Fenker, V. V. Frolov, D. Gaskell, K. Garrow, R. Gilman, P. Gueye, K. Hafidi, W. Hinton, R. J. Holt, T. Horn, G. M. Huber, H. Jackson, X. Jiang, M. K. Jones, K. Joo, J. J. Kelly, C. E. Keppel, J. Kuhn, E. Kinney, A. Klein, V. Kubarovsky, M. Liang, Y. Liang, G. Lolos, A. Lung, D. Mack, S. Malace, P. Markowitz, G. Mbianda, E. McGrath, D. Mckee, P. McKee, D. G. Meekins, H. Mkrtchyan, B. Moziak, J. Napolitano, T. Navasardyan, G. Niculescu, M. Nozar, T. Ostapenko, Z. Papandreou, D. Potterveld, P. E. Reimer, J. Reinhold, J. Roche, S. E. Rock, E. Schulte, E. Segbefia, C. Smith, G. R. Smith, P. Stoler, V. Tadevosyan, L. Tang, J. Telfeyan, L. Todor, M. Ungaro, A. Uzzle, S. Vidakovic, A. Villano, W. F. Vulcan, M. Wang, G. Warren, F. Wesselmann, B. Wojtsekhowski, S. A. Wood, C. Xu, C. Yan, L. Yuan, X. Zheng, B. Zihlmann, H. Zhu

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

In this paper, we classify all finite irreducible conformal modules over a class of Lie conformal algebras $\mathcal{W}(b)$ with $b\in\mathbb{C}$ related to the Virasoro conformal algebra. Explicitly, any finite irreducible conformal module over $\mathcal{W}(b)$ is proved to be isomorphic to $M_{\Delta,\alpha,\beta}$ with $\Delta\neq 0$ or $\beta\neq 0$ if $b=0$, or $M_{\Delta,\alpha}$ with $\Delta\neq 0$ if $b\neq0$. As a byproduct, all finite irreducible conformal modules over the Heisenberg-Virasoro conformal algebra and the Lie conformal algebra of $\mathcal{W}(2,2)$-type are classified. Read More

We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Read More

**Authors:**D. Flay, M. Posik, D. S. Parno, K. Allada, W. Armstrong, T. Averett, F. Benmokhtar, W. Bertozzi, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, S. Choi, E. Chudakov, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, X. Deng, A. Deur, C. Dutta, L. El Fassi, G. B. Franklin, M. Friend, H. Gao, F. Garibaldi, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, J. Gomez, L. Guo, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, C. Hyde, H. F. Ibrahim, X. Jiang, G. Jin, J. Katich, A. Kelleher, A. Kolarkar, W. Korsch, G. Kumbartzki, J. J. LeRose, R. Lindgren, N. Liyanage, E. Long, A. Lukhanin, V. Mamyan, D. McNulty, Z. -E. Meziani, R. Michaels, M. Mihovilovič, B. Moffit, N. Muangma, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, J. C. Peng, X. Qian, Y. Qiang, A. Rakhman, S. Riordan, A. Saha, B. Sawatzky, M. H. Shabestari, A. Shahinyan, S. Širca, P. Solvignon, R. Subedi, V. Sulkosky, A. Tobias, W. Troth, D. Wang, Y. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, X. Zheng

We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element $d_2$ of the neutron ($d_{2}^{n}$) was conducted. This quantity represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the spin structure functions $g_1$ and $g_2$ on $^{3}$He after nuclear corrections had been applied to these moments. Read More

Current shallow granular flow models suited to arbitrary topography can be divided into two types, those formulated in bed-fitted curvilinear coordinates, and those formulated in global Cartesian coordinates. The shallow granular flow model of Denlinger and Iverson \cite{Denlinger2004} and the Boussinesq-type shallow granular flow theory of Castro-Orgaz \emph{et al}. \cite{Castro2014} are formulated in a Cartesian coordinate system (with $z$ vertical), and both account for the effect of nonzero vertical acceleration on depth-averaged momentum fluxes and stress states. Read More

Bezigons, i.e., closed paths composed of B\'ezier curves, have been widely employed to describe shapes in image vectorization results. Read More

The purpose of this paper is to study $W(2,2)$ Lie conformal algebra, which has a free $\mathbb{C}[\partial]$-basis $\{L, M\}$ such that $[L_\lambda L]=(\partial+2\lambda)L$, $[L_\lambda M]=(\partial+2\lambda)M$, $[M_\lambda M]=0$. In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. Read More

In this paper, we compute the cohomology of the Heisenberg-Virasoro conformal algebra with coefficients in its modules, and in particular with trivial coefficients both for the basic and reduced complexes. Read More

The aim of this paper is to study a Lie conformal algebra of Block type. In this paper, conformal derivation, conformal module of rank 1 and low-dimensional comohology of the Lie conformal algebra of Block type are studied. Also, the vertex Poisson algebra structure associated with the Lie conformal algebra of Block type is constructed. Read More

This paper presents a stochastic approach to theorems concerning the behavior of iterations of the Bernstein operator $B_n$ taking a continuous function $f \in C[0,1]$ to a degree-$n$ polynomial when the number of iterations $k$ tends to infinity and $n$ is kept fixed or when $n$ tends to infinity as well. In the first instance, the underlying stochastic process is the so-called Wright-Fisher model, whereas, in the second instance, the underlying stochastic process is the Wright-Fisher diffusion. Both processes are probably the most basic ones in mathematical genetics. Read More

The Tur\'{a}n number of a graph $H$, $ex(n,H)$, is the maximum number of edges in a simple graph of order $n$ which does not contain $H$ as a subgraph. Let $k\cdot P_3$ denote $k$ disjoint copies of a path on $3$ vertices. In this paper, we determine the value $ex(n, k\cdot P_3)$ and characterize all extremal graphs. Read More

**Authors:**T. Gogami, C. Chen, D. Kawama, P. Achenbach, A. Ahmidouch, I. Albayrak, D. Androic, A. Asaturyan, R. Asaturyan, O. Ates, P. Baturin, R. Badui, W. Boeglin, J. Bono, E. Brash, P. Carter, A. Chiba, E. Christy, S. Danagoulian, R. De Leo, D. Doi, M. Elaasar, R. Ent, Y. Fujii, M. Fujita, M. Furic, M. Gabrielyan, L. Gan, F. Garibaldi, D. Gaskell, A. Gasparian, Y. Han, O. Hashimoto, T. Horn, B. Hu, Ed. V. Hungerford, M. Jones, H. Kanda, M. Kaneta, S. Kato, M. Kawai, H. Khanal, M. Kohl, A. Liyanage, W. Luo, K. Maeda, A. Margaryan, P. Markowitz, T. Maruta, A. Matsumura, V. Maxwell, A. Mkrtchyan, H. Mkrtchyan, S. Nagao, S. N. Nakamura, A. Narayan, C. Neville, G. Niculescu, M. I. Niculescu, A. Nunez, Nuruzzaman, Y. Okayasu, T. Petkovic, J. Pochodzalla, X. Qiu, J. Reinhold, V. M. Rodriguez, C. Samanta, B. Sawatzky, T. Seva, A. Shichijo, V. Tadevosyan, L. Tang, N. Taniya, K. Tsukada, M. Veilleux, W. Vulcan, F. R. Wesselmann, S. A. Wood, T. Yamamoto, L. Ya, Z. Ye, K. Yokota, L. Yuan, S. Zhamkochyan, L. Zhu

**Category:**Nuclear Experiment

Spectroscopy of a $^{10}_{\Lambda}$Be hypernucleus was carried out at JLab Hall C using the $(e,e^{\prime}K^{+})$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). Read More

We generalize the concept of photonic gauge potential in real space, by introducing an additional "synthetic" frequency dimension in addition to the real space dimensions. As an illustration we consider a one-dimensional array of ring resonators, each supporting a set of resonant modes having a frequency comb with spacing $\Omega$, undergoing a refractive index modulation at the modulation frequency equal to $\Omega$. We show that the modulation phase provides a gauge potential in the synthetic two-dimensional space with the dimensions being the frequency and the spatial axes. Read More

The purpose of this paper is to introduce and study super Hom-Gel'fand-Dorfman bialgebras and Hom-Lie conformal superalgebras. In this paper, we provide different ways for constructing super Hom-Gel'fand-Dorfman bialgebras and obtain some infinite-dimensional Hom-Lie superalgebras from affinization of super Hom-Gel'fand-Dorfman bialgebras. Also, we give a general construction of Hom-Lie conformal superalgebras from Hom-Lie superalgebras and establish equivalence of quadratic Hom-Lie conformal superalgebras and super Hom-Gel'fand-Dorfman bialgebras. Read More

Kingman's model of selection and mutation studies the limit type value distribution in an asexual population of discrete generations and infinite size undergoing selection and mutation. This paper generalizes the model to analyse the long-term evolution of Escherichia. coli in Lenski experiment. Read More

The Lenski experiment investigates the long-term evolution of bacterial populations. Its design allows the direct comparison of the reproductive fitness of an evolved strain with its founder ancestor. It was observed by Wiser et al. Read More

We consider a system of dynamically-modulated photonic resonator lattice undergoing photonic transition, and show that in the ultra-strong coupling regime such a lattice can exhibit non-trivial topological properties, including topologically non-trivial band gaps, and the associated topologically-robust one-way edge states. Compared with the same system operating in the regime where the rotating wave approximation is valid, operating the system in the ultra-strong coupling regime results in one-way edge modes that has a larger bandwidth, and is less susceptible to loss. Also, in the ultra-strong coupling regime, the system undergoes a topological insulator-to-metal phase transition as one varies the modulation strength. Read More

We introduce a method to achieve three-dimensional dynamic localization of light. We consider a dynamically-modulated resonator lattice that has been previously shown to exhibit an effective gauge potential for photons. When such an effective gauge potential varies sinusoidally in time, dynamic localization of light can be achieved. Read More

**Authors:**The Jefferson Lab Hall A Collaboration, Y. X. Zhao, K. Allada, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, C. Dutta, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Huang, H. F Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, J. Katich, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. Muñoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. -C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, X. Qian, Y. Qiang, A. Rakhman, R. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Širca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, W. A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, Y. Wang, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

We report the measurement of beam-target double-spin asymmetries ($A_\text{LT}$) in the inclusive production of identified hadrons, $\vec{e}~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized $^3\rm{He}$ target. Hadrons ($\pi^{\pm}$, $K^{\pm}$ and proton) were detected at 16$^{\circ}$ with an average momentum $<$$P_h$$>$=2. Read More

A length-$n$ random sequence $X_1,\ldots,X_n$ in a space $S$ is finitely exchangeable if its distribution is invariant under all $n!$ permutations of coordinates. Given $N > n$, we study the extendibility problem: when is it the case that there is a length-$N$ exchangeable random sequence $Y_1,\ldots, Y_N$ so that $(Y_1,\ldots,Y_n)$ has the same distribution as $(X_1,\ldots,X_n)$? In this paper, we give a necessary and sufficient condition so that, for given $n$ and $N$, the extendibility problem admits a solution. This is done by employing functional-analytic and measure-theoretic arguments that take into account the symmetry. Read More

Topological phases of matters are of fundamental interest and have promising applications. Fascinating topological properties of light have been unveiled in classical optical materials. However, the manifestation of topological physics in quantum optics has not been discovered. Read More

A random vector $X=(X_1,\ldots,X_n)$ with the $X_i$ taking values in an arbitrary measurable space $(S, \mathscr{S})$ is exchangeable if its law is the same as that of $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for any permutation $\sigma$. We give an alternative and shorter proof of the representation result (Jaynes \cite{Jay86} and Kerns and Sz\'ekely \cite{KS06}) stating that the law of $X$ is a mixture of product probability measures with respect to a signed mixing measure. The result is "finitistic" in nature meaning that it is a matter of linear algebra for finite $S$. Read More

**Authors:**L. Tang

^{1}, C. Chen

^{2}, T. Gogami

^{3}, D. Kawama

^{4}, Y. Han

^{5}, L. Yuan

^{6}, A. Matsumura

^{7}, Y. Okayasu

^{8}, T. Seva

^{9}, V. M. Rodriguez

^{10}, P. Baturin

^{11}, A. Acha

^{12}, P. Achenbach

^{13}, A. Ahmidouch

^{14}, I. Albayrak

^{15}, D. Androic

^{16}, A. Asaturyan

^{17}, R. Asaturyan

^{18}, O. Ates

^{19}, R. Badui

^{20}, O. K. Baker

^{21}, F. Benmokhtar

^{22}, W. Boeglin

^{23}, J. Bono

^{24}, P. Bosted

^{25}, E. Brash

^{26}, P. Carter

^{27}, R. Carlini

^{28}, A. Chiba

^{29}, M. E. Christy

^{30}, L. Cole

^{31}, M. M. Dalton

^{32}, S. Danagoulian

^{33}, A. Daniel

^{34}, R. De Leo

^{35}, V. Dharmawardane

^{36}, D. Doi

^{37}, K. Egiyan

^{38}, M. Elaasar

^{39}, R. Ent

^{40}, H. Fenker

^{41}, Y. Fujii

^{42}, M. Furic

^{43}, M. Gabrielyan

^{44}, L. Gan

^{45}, F. Garibaldi

^{46}, D. Gaskell

^{47}, A. Gasparian

^{48}, E. F. Gibson

^{49}, P. Gueye

^{50}, O. Hashimoto

^{51}, D. Honda

^{52}, T. Horn

^{53}, B. Hu

^{54}, Ed V. Hungerford

^{55}, C. Jayalath

^{56}, M. Jones

^{57}, K. Johnston

^{58}, N. Kalantarians

^{59}, H. Kanda

^{60}, M. Kaneta

^{61}, F. Kato

^{62}, S. Kato

^{63}, M. Kawai

^{64}, C. Keppel

^{65}, H. Khanal

^{66}, M. Kohl

^{67}, L. Kramer

^{68}, K. J. Lan

^{69}, Y. Li

^{70}, A. Liyanage

^{71}, W. Luo

^{72}, D. Mack

^{73}, K. Maeda

^{74}, S. Malace

^{75}, A. Margaryan

^{76}, G. Marikyan

^{77}, P. Markowitz

^{78}, T. Maruta

^{79}, N. Maruyama

^{80}, V. Maxwell

^{81}, D. J. Millener

^{82}, T. Miyoshi

^{83}, A. Mkrtchyan

^{84}, H. Mkrtchyan

^{85}, T. Motoba

^{86}, S. Nagao

^{87}, S. N. Nakamura

^{88}, A. Narayan

^{89}, C. Neville

^{90}, G. Niculescu

^{91}, M. I. Niculescu

^{92}, A. Nunez

^{93}, Nuruzzaman

^{94}, H. Nomura

^{95}, K. Nonaka

^{96}, A. Ohtani

^{97}, M. Oyamada

^{98}, N. Perez

^{99}, T. Petkovic

^{100}, J. Pochodzalla

^{101}, X. Qiu

^{102}, S. Randeniya

^{103}, B. Raue

^{104}, J. Reinhold

^{105}, R. Rivera

^{106}, J. Roche

^{107}, C. Samanta

^{108}, Y. Sato

^{109}, B. Sawatzky

^{110}, E. K. Segbefia

^{111}, D. Schott

^{112}, A. Shichijo

^{113}, N. Simicevic

^{114}, G. Smith

^{115}, Y. Song

^{116}, M. Sumihama

^{117}, V. Tadevosyan

^{118}, T. Takahashi

^{119}, N. Taniya

^{120}, K. Tsukada

^{121}, V. Tvaskis

^{122}, M. Veilleux

^{123}, W. Vulcan

^{124}, S. Wells

^{125}, F. R. Wesselmann

^{126}, S. A. Wood

^{127}, T. Yamamoto

^{128}, C. Yan

^{129}, Z. Ye

^{130}, K. Yokota

^{131}, S. Zhamkochyan

^{132}, L. Zhu

^{133}

**Affiliations:**

^{1}HKS - JLab E05-115 and E01-001 - Collaborations,

^{2}HKS - JLab E05-115 and E01-001 - Collaborations,

^{3}HKS - JLab E05-115 and E01-001 - Collaborations,

^{4}HKS - JLab E05-115 and E01-001 - Collaborations,

^{5}HKS - JLab E05-115 and E01-001 - Collaborations,

^{6}HKS - JLab E05-115 and E01-001 - Collaborations,

^{7}HKS - JLab E05-115 and E01-001 - Collaborations,

^{8}HKS - JLab E05-115 and E01-001 - Collaborations,

^{9}HKS - JLab E05-115 and E01-001 - Collaborations,

^{10}HKS - JLab E05-115 and E01-001 - Collaborations,

^{11}HKS - JLab E05-115 and E01-001 - Collaborations,

^{12}HKS - JLab E05-115 and E01-001 - Collaborations,

^{13}HKS - JLab E05-115 and E01-001 - Collaborations,

^{14}HKS - JLab E05-115 and E01-001 - Collaborations,

^{15}HKS - JLab E05-115 and E01-001 - Collaborations,

^{16}HKS - JLab E05-115 and E01-001 - Collaborations,

^{17}HKS - JLab E05-115 and E01-001 - Collaborations,

^{18}HKS - JLab E05-115 and E01-001 - Collaborations,

^{19}HKS - JLab E05-115 and E01-001 - Collaborations,

^{20}HKS - JLab E05-115 and E01-001 - Collaborations,

^{21}HKS - JLab E05-115 and E01-001 - Collaborations,

^{22}HKS - JLab E05-115 and E01-001 - Collaborations,

^{23}HKS - JLab E05-115 and E01-001 - Collaborations,

^{24}HKS - JLab E05-115 and E01-001 - Collaborations,

^{25}HKS - JLab E05-115 and E01-001 - Collaborations,

^{26}HKS - JLab E05-115 and E01-001 - Collaborations,

^{27}HKS - JLab E05-115 and E01-001 - Collaborations,

^{28}HKS - JLab E05-115 and E01-001 - Collaborations,

^{29}HKS - JLab E05-115 and E01-001 - Collaborations,

^{30}HKS - JLab E05-115 and E01-001 - Collaborations,

^{31}HKS - JLab E05-115 and E01-001 - Collaborations,

^{32}HKS - JLab E05-115 and E01-001 - Collaborations,

^{33}HKS - JLab E05-115 and E01-001 - Collaborations,

^{34}HKS - JLab E05-115 and E01-001 - Collaborations,

^{35}HKS - JLab E05-115 and E01-001 - Collaborations,

^{36}HKS - JLab E05-115 and E01-001 - Collaborations,

^{37}HKS - JLab E05-115 and E01-001 - Collaborations,

^{38}HKS - JLab E05-115 and E01-001 - Collaborations,

^{39}HKS - JLab E05-115 and E01-001 - Collaborations,

^{40}HKS - JLab E05-115 and E01-001 - Collaborations,

^{41}HKS - JLab E05-115 and E01-001 - Collaborations,

^{42}HKS - JLab E05-115 and E01-001 - Collaborations,

^{43}HKS - JLab E05-115 and E01-001 - Collaborations,

^{44}HKS - JLab E05-115 and E01-001 - Collaborations,

^{45}HKS - JLab E05-115 and E01-001 - Collaborations,

^{46}HKS - JLab E05-115 and E01-001 - Collaborations,

^{47}HKS - JLab E05-115 and E01-001 - Collaborations,

^{48}HKS - JLab E05-115 and E01-001 - Collaborations,

^{49}HKS - JLab E05-115 and E01-001 - Collaborations,

^{50}HKS - JLab E05-115 and E01-001 - Collaborations,

^{51}HKS - JLab E05-115 and E01-001 - Collaborations,

^{52}HKS - JLab E05-115 and E01-001 - Collaborations,

^{53}HKS - JLab E05-115 and E01-001 - Collaborations,

^{54}HKS - JLab E05-115 and E01-001 - Collaborations,

^{55}HKS - JLab E05-115 and E01-001 - Collaborations,

^{56}HKS - JLab E05-115 and E01-001 - Collaborations,

^{57}HKS - JLab E05-115 and E01-001 - Collaborations,

^{58}HKS - JLab E05-115 and E01-001 - Collaborations,

^{59}HKS - JLab E05-115 and E01-001 - Collaborations,

^{60}HKS - JLab E05-115 and E01-001 - Collaborations,

^{61}HKS - JLab E05-115 and E01-001 - Collaborations,

^{62}HKS - JLab E05-115 and E01-001 - Collaborations,

^{63}HKS - JLab E05-115 and E01-001 - Collaborations,

^{64}HKS - JLab E05-115 and E01-001 - Collaborations,

^{65}HKS - JLab E05-115 and E01-001 - Collaborations,

^{66}HKS - JLab E05-115 and E01-001 - Collaborations,

^{67}HKS - JLab E05-115 and E01-001 - Collaborations,

^{68}HKS - JLab E05-115 and E01-001 - Collaborations,

^{69}HKS - JLab E05-115 and E01-001 - Collaborations,

^{70}HKS - JLab E05-115 and E01-001 - Collaborations,

^{71}HKS - JLab E05-115 and E01-001 - Collaborations,

^{72}HKS - JLab E05-115 and E01-001 - Collaborations,

^{73}HKS - JLab E05-115 and E01-001 - Collaborations,

^{74}HKS - JLab E05-115 and E01-001 - Collaborations,

^{75}HKS - JLab E05-115 and E01-001 - Collaborations,

^{76}HKS - JLab E05-115 and E01-001 - Collaborations,

^{77}HKS - JLab E05-115 and E01-001 - Collaborations,

^{78}HKS - JLab E05-115 and E01-001 - Collaborations,

^{79}HKS - JLab E05-115 and E01-001 - Collaborations,

^{80}HKS - JLab E05-115 and E01-001 - Collaborations,

^{81}HKS - JLab E05-115 and E01-001 - Collaborations,

^{82}HKS - JLab E05-115 and E01-001 - Collaborations,

^{83}HKS - JLab E05-115 and E01-001 - Collaborations,

^{84}HKS - JLab E05-115 and E01-001 - Collaborations,

^{85}HKS - JLab E05-115 and E01-001 - Collaborations,

^{86}HKS - JLab E05-115 and E01-001 - Collaborations,

^{87}HKS - JLab E05-115 and E01-001 - Collaborations,

^{88}HKS - JLab E05-115 and E01-001 - Collaborations,

^{89}HKS - JLab E05-115 and E01-001 - Collaborations,

^{90}HKS - JLab E05-115 and E01-001 - Collaborations,

^{91}HKS - JLab E05-115 and E01-001 - Collaborations,

^{92}HKS - JLab E05-115 and E01-001 - Collaborations,

^{93}HKS - JLab E05-115 and E01-001 - Collaborations,

^{94}HKS - JLab E05-115 and E01-001 - Collaborations,

^{95}HKS - JLab E05-115 and E01-001 - Collaborations,

^{96}HKS - JLab E05-115 and E01-001 - Collaborations,

^{97}HKS - JLab E05-115 and E01-001 - Collaborations,

^{98}HKS - JLab E05-115 and E01-001 - Collaborations,

^{99}HKS - JLab E05-115 and E01-001 - Collaborations,

^{100}HKS - JLab E05-115 and E01-001 - Collaborations,

^{101}HKS - JLab E05-115 and E01-001 - Collaborations,

^{102}HKS - JLab E05-115 and E01-001 - Collaborations,

^{103}HKS - JLab E05-115 and E01-001 - Collaborations,

^{104}HKS - JLab E05-115 and E01-001 - Collaborations,

^{105}HKS - JLab E05-115 and E01-001 - Collaborations,

^{106}HKS - JLab E05-115 and E01-001 - Collaborations,

^{107}HKS - JLab E05-115 and E01-001 - Collaborations,

^{108}HKS - JLab E05-115 and E01-001 - Collaborations,

^{109}HKS - JLab E05-115 and E01-001 - Collaborations,

^{110}HKS - JLab E05-115 and E01-001 - Collaborations,

^{111}HKS - JLab E05-115 and E01-001 - Collaborations,

^{112}HKS - JLab E05-115 and E01-001 - Collaborations,

^{113}HKS - JLab E05-115 and E01-001 - Collaborations,

^{114}HKS - JLab E05-115 and E01-001 - Collaborations,

^{115}HKS - JLab E05-115 and E01-001 - Collaborations,

^{116}HKS - JLab E05-115 and E01-001 - Collaborations,

^{117}HKS - JLab E05-115 and E01-001 - Collaborations,

^{118}HKS - JLab E05-115 and E01-001 - Collaborations,

^{119}HKS - JLab E05-115 and E01-001 - Collaborations,

^{120}HKS - JLab E05-115 and E01-001 - Collaborations,

^{121}HKS - JLab E05-115 and E01-001 - Collaborations,

^{122}HKS - JLab E05-115 and E01-001 - Collaborations,

^{123}HKS - JLab E05-115 and E01-001 - Collaborations,

^{124}HKS - JLab E05-115 and E01-001 - Collaborations,

^{125}HKS - JLab E05-115 and E01-001 - Collaborations,

^{126}HKS - JLab E05-115 and E01-001 - Collaborations,

^{127}HKS - JLab E05-115 and E01-001 - Collaborations,

^{128}HKS - JLab E05-115 and E01-001 - Collaborations,

^{129}HKS - JLab E05-115 and E01-001 - Collaborations,

^{130}HKS - JLab E05-115 and E01-001 - Collaborations,

^{131}HKS - JLab E05-115 and E01-001 - Collaborations,

^{132}HKS - JLab E05-115 and E01-001 - Collaborations,

^{133}HKS - JLab E05-115 and E01-001 - Collaborations

**Category:**Nuclear Experiment

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

**Authors:**D. S. Parno

^{1}, D. Flay

^{2}, M. Posik

^{3}, K. Allada

^{4}, W. Armstrong

^{5}, T. Averett

^{6}, F. Benmokhtar

^{7}, W. Bertozzi

^{8}, A. Camsonne

^{9}, M. Canan

^{10}, G. D. Cates

^{11}, C. Chen

^{12}, J. -P. Chen

^{13}, S. Choi

^{14}, E. Chudakov

^{15}, F. Cusanno

^{16}, M. M. Dalton

^{17}, W. Deconinck

^{18}, C. W. de Jager

^{19}, X. Deng

^{20}, A. Deur

^{21}, C. Dutta

^{22}, L. El Fassi

^{23}, G. B. Franklin

^{24}, M. Friend

^{25}, H. Gao

^{26}, F. Garibaldi

^{27}, S. Gilad

^{28}, R. Gilman

^{29}, O. Glamazdin

^{30}, S. Golge

^{31}, J. Gomez

^{32}, L. Guo

^{33}, O. Hansen

^{34}, D. W. Higinbotham

^{35}, T. Holmstrom

^{36}, J. Huang

^{37}, C. Hyde

^{38}, H. F. Ibrahim

^{39}, X. Jiang

^{40}, G. Jin

^{41}, J. Katich

^{42}, A. Kelleher

^{43}, A. Kolarkar

^{44}, W. Korsch

^{45}, G. Kumbartzki

^{46}, J. J. LeRose

^{47}, R. Lindgren

^{48}, N. Liyanage

^{49}, E. Long

^{50}, A. Lukhanin

^{51}, V. Mamyan

^{52}, D. McNulty

^{53}, Z. -E. Meziani

^{54}, R. Michaels

^{55}, M. Mihovilovič

^{56}, B. Moffit

^{57}, N. Muangma

^{58}, S. Nanda

^{59}, A. Narayan

^{60}, V. Nelyubin

^{61}, B. Norum

^{62}, Nuruzzaman

^{63}, Y. Oh

^{64}, J. C. Peng

^{65}, X. Qian

^{66}, Y. Qiang

^{67}, A. Rakhman

^{68}, S. Riordan

^{69}, A. Saha

^{70}, B. Sawatzky

^{71}, M. H. Shabestari

^{72}, A. Shahinyan

^{73}, S. Širca

^{74}, P. Solvignon

^{75}, R. Subedi

^{76}, V. Sulkosky

^{77}, W. A. Tobias

^{78}, W. Troth

^{79}, D. Wang

^{80}, Y. Wang

^{81}, B. Wojtsekhowski

^{82}, X. Yan

^{83}, H. Yao

^{84}, Y. Ye

^{85}, Z. Ye

^{86}, L. Yuan

^{87}, X. Zhan

^{88}, Y. Zhang

^{89}, Y. -W. Zhang

^{90}, B. Zhao

^{91}, X. Zheng

^{92}

**Affiliations:**

^{1}The Jefferson Lab Hall A Collaboration,

^{2}The Jefferson Lab Hall A Collaboration,

^{3}The Jefferson Lab Hall A Collaboration,

^{4}The Jefferson Lab Hall A Collaboration,

^{5}The Jefferson Lab Hall A Collaboration,

^{6}The Jefferson Lab Hall A Collaboration,

^{7}The Jefferson Lab Hall A Collaboration,

^{8}The Jefferson Lab Hall A Collaboration,

^{9}The Jefferson Lab Hall A Collaboration,

^{10}The Jefferson Lab Hall A Collaboration,

^{11}The Jefferson Lab Hall A Collaboration,

^{12}The Jefferson Lab Hall A Collaboration,

^{13}The Jefferson Lab Hall A Collaboration,

^{14}The Jefferson Lab Hall A Collaboration,

^{15}The Jefferson Lab Hall A Collaboration,

^{16}The Jefferson Lab Hall A Collaboration,

^{17}The Jefferson Lab Hall A Collaboration,

^{18}The Jefferson Lab Hall A Collaboration,

^{19}The Jefferson Lab Hall A Collaboration,

^{20}The Jefferson Lab Hall A Collaboration,

^{21}The Jefferson Lab Hall A Collaboration,

^{22}The Jefferson Lab Hall A Collaboration,

^{23}The Jefferson Lab Hall A Collaboration,

^{24}The Jefferson Lab Hall A Collaboration,

^{25}The Jefferson Lab Hall A Collaboration,

^{26}The Jefferson Lab Hall A Collaboration,

^{27}The Jefferson Lab Hall A Collaboration,

^{28}The Jefferson Lab Hall A Collaboration,

^{29}The Jefferson Lab Hall A Collaboration,

^{30}The Jefferson Lab Hall A Collaboration,

^{31}The Jefferson Lab Hall A Collaboration,

^{32}The Jefferson Lab Hall A Collaboration,

^{33}The Jefferson Lab Hall A Collaboration,

^{34}The Jefferson Lab Hall A Collaboration,

^{35}The Jefferson Lab Hall A Collaboration,

^{36}The Jefferson Lab Hall A Collaboration,

^{37}The Jefferson Lab Hall A Collaboration,

^{38}The Jefferson Lab Hall A Collaboration,

^{39}The Jefferson Lab Hall A Collaboration,

^{40}The Jefferson Lab Hall A Collaboration,

^{41}The Jefferson Lab Hall A Collaboration,

^{42}The Jefferson Lab Hall A Collaboration,

^{43}The Jefferson Lab Hall A Collaboration,

^{44}The Jefferson Lab Hall A Collaboration,

^{45}The Jefferson Lab Hall A Collaboration,

^{46}The Jefferson Lab Hall A Collaboration,

^{47}The Jefferson Lab Hall A Collaboration,

^{48}The Jefferson Lab Hall A Collaboration,

^{49}The Jefferson Lab Hall A Collaboration,

^{50}The Jefferson Lab Hall A Collaboration,

^{51}The Jefferson Lab Hall A Collaboration,

^{52}The Jefferson Lab Hall A Collaboration,

^{53}The Jefferson Lab Hall A Collaboration,

^{54}The Jefferson Lab Hall A Collaboration,

^{55}The Jefferson Lab Hall A Collaboration,

^{56}The Jefferson Lab Hall A Collaboration,

^{57}The Jefferson Lab Hall A Collaboration,

^{58}The Jefferson Lab Hall A Collaboration,

^{59}The Jefferson Lab Hall A Collaboration,

^{60}The Jefferson Lab Hall A Collaboration,

^{61}The Jefferson Lab Hall A Collaboration,

^{62}The Jefferson Lab Hall A Collaboration,

^{63}The Jefferson Lab Hall A Collaboration,

^{64}The Jefferson Lab Hall A Collaboration,

^{65}The Jefferson Lab Hall A Collaboration,

^{66}The Jefferson Lab Hall A Collaboration,

^{67}The Jefferson Lab Hall A Collaboration,

^{68}The Jefferson Lab Hall A Collaboration,

^{69}The Jefferson Lab Hall A Collaboration,

^{70}The Jefferson Lab Hall A Collaboration,

^{71}The Jefferson Lab Hall A Collaboration,

^{72}The Jefferson Lab Hall A Collaboration,

^{73}The Jefferson Lab Hall A Collaboration,

^{74}The Jefferson Lab Hall A Collaboration,

^{75}The Jefferson Lab Hall A Collaboration,

^{76}The Jefferson Lab Hall A Collaboration,

^{77}The Jefferson Lab Hall A Collaboration,

^{78}The Jefferson Lab Hall A Collaboration,

^{79}The Jefferson Lab Hall A Collaboration,

^{80}The Jefferson Lab Hall A Collaboration,

^{81}The Jefferson Lab Hall A Collaboration,

^{82}The Jefferson Lab Hall A Collaboration,

^{83}The Jefferson Lab Hall A Collaboration,

^{84}The Jefferson Lab Hall A Collaboration,

^{85}The Jefferson Lab Hall A Collaboration,

^{86}The Jefferson Lab Hall A Collaboration,

^{87}The Jefferson Lab Hall A Collaboration,

^{88}The Jefferson Lab Hall A Collaboration,

^{89}The Jefferson Lab Hall A Collaboration,

^{90}The Jefferson Lab Hall A Collaboration,

^{91}The Jefferson Lab Hall A Collaboration,

^{92}The Jefferson Lab Hall A Collaboration

**Category:**Nuclear Experiment

We have performed precision measurements of the double-spin virtual-photon asymmetry $A_1$ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer. Our data cover a wide kinematic range $0.277 \leq x \leq 0. Read More

**Authors:**Y. X. Zhao

^{1}, Y. Wang

^{2}, K. Allada

^{3}, K. Aniol

^{4}, J. R. M. Annand

^{5}, T. Averett

^{6}, F. Benmokhtar

^{7}, W. Bertozzi

^{8}, P. C. Bradshaw

^{9}, P. Bosted

^{10}, A. Camsonne

^{11}, M. Canan

^{12}, G. D. Cates

^{13}, C. Chen

^{14}, J. -P. Chen

^{15}, W. Chen

^{16}, K. Chirapatpimol

^{17}, E. Chudakov

^{18}, E. Cisbani

^{19}, J. C. Cornejo

^{20}, F. Cusanno

^{21}, M. M. Dalton

^{22}, W. Deconinck

^{23}, C. W. de Jager

^{24}, R. De Leo

^{25}, X. Deng

^{26}, A. Deur

^{27}, H. Ding

^{28}, P. A. M. Dolph

^{29}, C. Dutta

^{30}, D. Dutta

^{31}, L. El Fassi

^{32}, S. Frullani

^{33}, H. Gao

^{34}, F. Garibaldi

^{35}, D. Gaskell

^{36}, S. Gilad

^{37}, R. Gilman

^{38}, O. Glamazdin

^{39}, S. Golge

^{40}, L. Guo

^{41}, D. Hamilton

^{42}, O. Hansen

^{43}, D. W. Higinbotham

^{44}, T. Holmstrom

^{45}, J. Huang

^{46}, M. Huang

^{47}, H. F Ibrahim

^{48}, M. Iodice

^{49}, X. Jiang

^{50}, G. Jin

^{51}, M. K. Jones

^{52}, J. Katich

^{53}, A. Kelleher

^{54}, W. Kim

^{55}, A. Kolarkar

^{56}, W. Korsch

^{57}, J. J. LeRose

^{58}, X. Li

^{59}, Y. Li

^{60}, R. Lindgren

^{61}, N. Liyanage

^{62}, E. Long

^{63}, H. -J. Lu

^{64}, D. J. Margaziotis

^{65}, P. Markowitz

^{66}, S. Marrone

^{67}, D. McNulty

^{68}, Z. -E. Meziani

^{69}, R. Michaels

^{70}, B. Moffit

^{71}, C. Muñoz Camacho

^{72}, S. Nanda

^{73}, A. Narayan

^{74}, V. Nelyubin

^{75}, B. Norum

^{76}, Y. Oh

^{77}, M. Osipenko

^{78}, D. Parno

^{79}, J. -C. Peng

^{80}, S. K. Phillips

^{81}, M. Posik

^{82}, A. J. R. Puckett

^{83}, X. Qian

^{84}, Y. Qiang

^{85}, A. Rakhman

^{86}, R. Ransome

^{87}, S. Riordan

^{88}, A. Saha

^{89}, B. Sawatzky

^{90}, E. Schulte

^{91}, A. Shahinyan

^{92}, M. H. Shabestari

^{93}, S. Širca

^{94}, S. Stepanyan

^{95}, R. Subedi

^{96}, V. Sulkosky

^{97}, L. -G. Tang

^{98}, A. Tobias

^{99}, G. M. Urciuoli

^{100}, I. Vilardi

^{101}, K. Wang

^{102}, B. Wojtsekhowski

^{103}, X. Yan

^{104}, H. Yao

^{105}, Y. Ye

^{106}, Z. Ye

^{107}, L. Yuan

^{108}, X. Zhan

^{109}, Y. Zhang

^{110}, Y. -W. Zhang

^{111}, B. Zhao

^{112}, X. Zheng

^{113}, L. Zhu

^{114}, X. Zhu

^{115}, X. Zong

^{116}

**Affiliations:**

^{1}Jefferson Lab Hall A Collaboration,

^{2}Jefferson Lab Hall A Collaboration,

^{3}Jefferson Lab Hall A Collaboration,

^{4}Jefferson Lab Hall A Collaboration,

^{5}Jefferson Lab Hall A Collaboration,

^{6}Jefferson Lab Hall A Collaboration,

^{7}Jefferson Lab Hall A Collaboration,

^{8}Jefferson Lab Hall A Collaboration,

^{9}Jefferson Lab Hall A Collaboration,

^{10}Jefferson Lab Hall A Collaboration,

^{11}Jefferson Lab Hall A Collaboration,

^{12}Jefferson Lab Hall A Collaboration,

^{13}Jefferson Lab Hall A Collaboration,

^{14}Jefferson Lab Hall A Collaboration,

^{15}Jefferson Lab Hall A Collaboration,

^{16}Jefferson Lab Hall A Collaboration,

^{17}Jefferson Lab Hall A Collaboration,

^{18}Jefferson Lab Hall A Collaboration,

^{19}Jefferson Lab Hall A Collaboration,

^{20}Jefferson Lab Hall A Collaboration,

^{21}Jefferson Lab Hall A Collaboration,

^{22}Jefferson Lab Hall A Collaboration,

^{23}Jefferson Lab Hall A Collaboration,

^{24}Jefferson Lab Hall A Collaboration,

^{25}Jefferson Lab Hall A Collaboration,

^{26}Jefferson Lab Hall A Collaboration,

^{27}Jefferson Lab Hall A Collaboration,

^{28}Jefferson Lab Hall A Collaboration,

^{29}Jefferson Lab Hall A Collaboration,

^{30}Jefferson Lab Hall A Collaboration,

^{31}Jefferson Lab Hall A Collaboration,

^{32}Jefferson Lab Hall A Collaboration,

^{33}Jefferson Lab Hall A Collaboration,

^{34}Jefferson Lab Hall A Collaboration,

^{35}Jefferson Lab Hall A Collaboration,

^{36}Jefferson Lab Hall A Collaboration,

^{37}Jefferson Lab Hall A Collaboration,

^{38}Jefferson Lab Hall A Collaboration,

^{39}Jefferson Lab Hall A Collaboration,

^{40}Jefferson Lab Hall A Collaboration,

^{41}Jefferson Lab Hall A Collaboration,

^{42}Jefferson Lab Hall A Collaboration,

^{43}Jefferson Lab Hall A Collaboration,

^{44}Jefferson Lab Hall A Collaboration,

^{45}Jefferson Lab Hall A Collaboration,

^{46}Jefferson Lab Hall A Collaboration,

^{47}Jefferson Lab Hall A Collaboration,

^{48}Jefferson Lab Hall A Collaboration,

^{49}Jefferson Lab Hall A Collaboration,

^{50}Jefferson Lab Hall A Collaboration,

^{51}Jefferson Lab Hall A Collaboration,

^{52}Jefferson Lab Hall A Collaboration,

^{53}Jefferson Lab Hall A Collaboration,

^{54}Jefferson Lab Hall A Collaboration,

^{55}Jefferson Lab Hall A Collaboration,

^{56}Jefferson Lab Hall A Collaboration,

^{57}Jefferson Lab Hall A Collaboration,

^{58}Jefferson Lab Hall A Collaboration,

^{59}Jefferson Lab Hall A Collaboration,

^{60}Jefferson Lab Hall A Collaboration,

^{61}Jefferson Lab Hall A Collaboration,

^{62}Jefferson Lab Hall A Collaboration,

^{63}Jefferson Lab Hall A Collaboration,

^{64}Jefferson Lab Hall A Collaboration,

^{65}Jefferson Lab Hall A Collaboration,

^{66}Jefferson Lab Hall A Collaboration,

^{67}Jefferson Lab Hall A Collaboration,

^{68}Jefferson Lab Hall A Collaboration,

^{69}Jefferson Lab Hall A Collaboration,

^{70}Jefferson Lab Hall A Collaboration,

^{71}Jefferson Lab Hall A Collaboration,

^{72}Jefferson Lab Hall A Collaboration,

^{73}Jefferson Lab Hall A Collaboration,

^{74}Jefferson Lab Hall A Collaboration,

^{75}Jefferson Lab Hall A Collaboration,

^{76}Jefferson Lab Hall A Collaboration,

^{77}Jefferson Lab Hall A Collaboration,

^{78}Jefferson Lab Hall A Collaboration,

^{79}Jefferson Lab Hall A Collaboration,

^{80}Jefferson Lab Hall A Collaboration,

^{81}Jefferson Lab Hall A Collaboration,

^{82}Jefferson Lab Hall A Collaboration,

^{83}Jefferson Lab Hall A Collaboration,

^{84}Jefferson Lab Hall A Collaboration,

^{85}Jefferson Lab Hall A Collaboration,

^{86}Jefferson Lab Hall A Collaboration,

^{87}Jefferson Lab Hall A Collaboration,

^{88}Jefferson Lab Hall A Collaboration,

^{89}Jefferson Lab Hall A Collaboration,

^{90}Jefferson Lab Hall A Collaboration,

^{91}Jefferson Lab Hall A Collaboration,

^{92}Jefferson Lab Hall A Collaboration,

^{93}Jefferson Lab Hall A Collaboration,

^{94}Jefferson Lab Hall A Collaboration,

^{95}Jefferson Lab Hall A Collaboration,

^{96}Jefferson Lab Hall A Collaboration,

^{97}Jefferson Lab Hall A Collaboration,

^{98}Jefferson Lab Hall A Collaboration,

^{99}Jefferson Lab Hall A Collaboration,

^{100}Jefferson Lab Hall A Collaboration,

^{101}Jefferson Lab Hall A Collaboration,

^{102}Jefferson Lab Hall A Collaboration,

^{103}Jefferson Lab Hall A Collaboration,

^{104}Jefferson Lab Hall A Collaboration,

^{105}Jefferson Lab Hall A Collaboration,

^{106}Jefferson Lab Hall A Collaboration,

^{107}Jefferson Lab Hall A Collaboration,

^{108}Jefferson Lab Hall A Collaboration,

^{109}Jefferson Lab Hall A Collaboration,

^{110}Jefferson Lab Hall A Collaboration,

^{111}Jefferson Lab Hall A Collaboration,

^{112}Jefferson Lab Hall A Collaboration,

^{113}Jefferson Lab Hall A Collaboration,

^{114}Jefferson Lab Hall A Collaboration,

^{115}Jefferson Lab Hall A Collaboration,

^{116}Jefferson Lab Hall A Collaboration

**Category:**Nuclear Experiment

We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3{\rm{He}}$ target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1$<$$x_{bj}$$<$0. Read More

In this paper, we establish two Santal\'o type formulas for general Finsler manifolds. As applications, we derive a universal lower bound for the first eigenvalue of the nonlinear Laplacian, two Croke type isoperimetric inequalities, and a Yamaguch type finiteness theorem in Finser geometry. Read More

**Authors:**M. Posik, D. Flay, D. S. Parno, K. Allada, W. Armstrong, T. Averett, F. Benmokhtar, W. Bertozzi, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, S. Choi, E. Chudakov, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, X. Deng, A. Deur, C. Dutta, L. El Fassi, G. B. Franklin, M. Friend, H. Gao, F. Garibaldi, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, J. Gomez, L. Guo, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, C. Hyde, H. F. Ibrahim, X. Jiang, G. Jin, J. Katich, A. Kelleher, A. Kolarkar, W. Korsch, G. Kumbartzki, J. J. LeRose, R. Lindgren, N. Liyanage, E. Long, A. Lukhanin, V. Mamyan, D. McNulty, Z. -E. Meziani, R. Michaels, M. Mihovilovič, B. Moffit, N. Muangma, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Nuruzzaman, Y. Oh, J. C. Peng, X. Qian, Y. Qiang, A. Rakhman, S. Riordan, A. Saha, B. Sawatzky, M. H. Shabestari, A. Shahinyan, S. Širca, P. Solvignon, R. Subedi, V. Sulkosky, W. A. Tobias, W. Troth, D. Wang, Y. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, X. Zheng

**Category:**Nuclear Experiment

Double-spin asymmetries and absolute cross sections were measured at large Bjorken $x$ (0.25 $ \le x \le $ 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4. Read More

The Erd\H{o}s-S\'{o}s Conjecture states that if $G$ is a simple graph of order $n$ with average degree more than $k-2,$ then $G$ contains every tree of order $k$. In this paper, we prove that Erd\H{o}s-S\'{o}s Conjecture is true for $n=k+4$. Read More

We show by a direct construction that there are at least $\exp\{cV^{(d-1)/(d+1)}\}$ convex lattice polytopes in $\mathbb{R}^d$ of volume $V$ that are different in the sense that none of them can be carried to an other one by a lattice preserving affine transformation. This is achieved by considering the family $\mathcal{P}^d(r)$ (to be defined in the text) of convex lattice polytopes whose volumes are between $0$ and $r^d/d!$. Namely we prove that for $P \in \mathcal{P}^d(r)$, $d!\mathrm{vol\;} P$ takes all possible integer values between $cr^{d-1}$ and $r^d$ where $c>0$ is a constant depending only on $d$. Read More

The aim of this paper is to introduce the notions of Hom Gel'fand-Dorfman bialgebra and Hom-Lie conformal algebra. In this paper, we give four constructions of Hom Gel'fand-Dorfman bialgebras. Also, we provide a general construction of Hom-Lie conformal algebras from Hom-Lie algebras. Read More

We suggest a method to generate coherent short pulses by generating a frequency comb using lasing without inversion in the transient regime. We use a universal method to study the propagation of a pulse in various spectral regions through an active medium that is strongly driven on a low-frequency transition on a time scale shorter than the decoherence time. The results show gain on the sidebands at different modes can be produced even if there is no initial population inversion prepared. Read More

**Authors:**Y. Zhang, X. Qian, K. Allada, C. Dutta, J. Huang, J. Katich, Y. Wang, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. Muñoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Sirca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, W. A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

**Category:**Nuclear Experiment

An experiment to measure single-spin asymmetries in semi-inclusive production
of charged pions in deep-inelastic scattering on a transversely polarized
$^3$He target was performed at Jefferson Lab in the kinematic region of
$0.16

This article shows the asymptotics of distributions of various functionals of the Beta$(2-\alpha,\alpha)$ $n$-coalescent process with $1<\alpha<2$ when $n$ goes to infinity. This process is a Markov process taking {values} in the set of partitions of $\{1, \dots, n\}$, evolving from the intial value $\{1\},\cdots, \{n\}$ by merging (coalescing) blocks together into one and finally reaching the absorbing state $\{1, \dots, n\}$. The minimal clade of $1$ is the block which contains $1$ at the time of coalescence of the singleton $\{1\}$. Read More

**Authors:**K. Allada

^{1}, Y. X. Zhao

^{2}, K. Aniol

^{3}, J. R. M. Annand

^{4}, T. Averett

^{5}, F. Benmokhtar

^{6}, W. Bertozzi

^{7}, P. C. Bradshaw

^{8}, P. Bosted

^{9}, A. Camsonne

^{10}, M. Canan

^{11}, G. D. Cates

^{12}, C. Chen

^{13}, J. -P. Chen

^{14}, W. Chen

^{15}, K. Chirapatpimol

^{16}, E. Chudakov

^{17}, E. Cisbani

^{18}, J. C. Cornejo

^{19}, F. Cusanno

^{20}, M. Dalton

^{21}, W. Deconinck

^{22}, C. W. de Jager

^{23}, R. De Leo

^{24}, X. Deng

^{25}, A. Deur

^{26}, H. Ding

^{27}, P. A. M. Dolph

^{28}, C. Dutta

^{29}, D. Dutta

^{30}, L. El Fassi

^{31}, S. Frullani

^{32}, H. Gao

^{33}, F. Garibaldi

^{34}, D. Gaskell

^{35}, S. Gilad

^{36}, R. Gilman

^{37}, O. Glamazdin

^{38}, S. Golge

^{39}, L. Guo

^{40}, D. Hamilton

^{41}, O. Hansen

^{42}, D. W. Higinbotham

^{43}, T. Holmstrom

^{44}, J. Huang

^{45}, M. Huang

^{46}, H. F Ibrahim

^{47}, M. Iodice

^{48}, X. Jiang

^{49}, G. Jin

^{50}, M. K. Jones

^{51}, J. Katich

^{52}, A. Kelleher

^{53}, W. Kim

^{54}, A. Kolarkar

^{55}, W. Korsch

^{56}, J. J. LeRose

^{57}, X. Li

^{58}, Y. Li

^{59}, R. Lindgren

^{60}, N. Liyanage

^{61}, E. Long

^{62}, H. -J. Lu

^{63}, D. J. Margaziotis

^{64}, P. Markowitz

^{65}, S. Marrone

^{66}, D. McNulty

^{67}, Z. -E. Meziani

^{68}, R. Michaels

^{69}, B. Moffit

^{70}, C. Munoz Camacho

^{71}, S. Nanda

^{72}, A. Narayan

^{73}, V. Nelyubin

^{74}, B. Norum

^{75}, Y. Oh

^{76}, M. Osipenko

^{77}, D. Parno

^{78}, J. -C. Peng

^{79}, S. K. Phillips

^{80}, M. Posik

^{81}, A. J. R. Puckett

^{82}, X. Qian

^{83}, Y. Qiang

^{84}, A. Rakhman

^{85}, R. Ransome

^{86}, S. Riordan

^{87}, A. Saha

^{88}, B. Sawatzky

^{89}, E. Schulte

^{90}, A. Shahinyan

^{91}, M. H. Shabestari

^{92}, S. Sirca

^{93}, S. Stepanyan

^{94}, R. Subedi

^{95}, V. Sulkosky

^{96}, L. -G. Tang

^{97}, A. Tobias

^{98}, G. M. Urciuoli

^{99}, I. Vilardi

^{100}, K. Wang

^{101}, Y. Wang

^{102}, B. Wojtsekhowski

^{103}, X. Yan

^{104}, H. Yao

^{105}, Y. Ye

^{106}, Z. Ye

^{107}, L. Yuan

^{108}, X. Zhan

^{109}, Y. Zhang

^{110}, Y. -W. Zhang

^{111}, B. Zhao

^{112}, X. Zheng

^{113}, L. Zhu

^{114}, X. Zhu

^{115}, X. Zong

^{116}

**Affiliations:**

^{1}Jefferson Lab Hall A Collaboration,

^{2}Jefferson Lab Hall A Collaboration,

^{3}Jefferson Lab Hall A Collaboration,

^{4}Jefferson Lab Hall A Collaboration,

^{5}Jefferson Lab Hall A Collaboration,

^{6}Jefferson Lab Hall A Collaboration,

^{7}Jefferson Lab Hall A Collaboration,

^{8}Jefferson Lab Hall A Collaboration,

^{9}Jefferson Lab Hall A Collaboration,

^{10}Jefferson Lab Hall A Collaboration,

^{11}Jefferson Lab Hall A Collaboration,

^{12}Jefferson Lab Hall A Collaboration,

^{13}Jefferson Lab Hall A Collaboration,

^{14}Jefferson Lab Hall A Collaboration,

^{15}Jefferson Lab Hall A Collaboration,

^{16}Jefferson Lab Hall A Collaboration,

^{17}Jefferson Lab Hall A Collaboration,

^{18}Jefferson Lab Hall A Collaboration,

^{19}Jefferson Lab Hall A Collaboration,

^{20}Jefferson Lab Hall A Collaboration,

^{21}Jefferson Lab Hall A Collaboration,

^{22}Jefferson Lab Hall A Collaboration,

^{23}Jefferson Lab Hall A Collaboration,

^{24}Jefferson Lab Hall A Collaboration,

^{25}Jefferson Lab Hall A Collaboration,

^{26}Jefferson Lab Hall A Collaboration,

^{27}Jefferson Lab Hall A Collaboration,

^{28}Jefferson Lab Hall A Collaboration,

^{29}Jefferson Lab Hall A Collaboration,

^{30}Jefferson Lab Hall A Collaboration,

^{31}Jefferson Lab Hall A Collaboration,

^{32}Jefferson Lab Hall A Collaboration,

^{33}Jefferson Lab Hall A Collaboration,

^{34}Jefferson Lab Hall A Collaboration,

^{35}Jefferson Lab Hall A Collaboration,

^{36}Jefferson Lab Hall A Collaboration,

^{37}Jefferson Lab Hall A Collaboration,

^{38}Jefferson Lab Hall A Collaboration,

^{39}Jefferson Lab Hall A Collaboration,

^{40}Jefferson Lab Hall A Collaboration,

^{41}Jefferson Lab Hall A Collaboration,

^{42}Jefferson Lab Hall A Collaboration,

^{43}Jefferson Lab Hall A Collaboration,

^{44}Jefferson Lab Hall A Collaboration,

^{45}Jefferson Lab Hall A Collaboration,

^{46}Jefferson Lab Hall A Collaboration,

^{47}Jefferson Lab Hall A Collaboration,

^{48}Jefferson Lab Hall A Collaboration,

^{49}Jefferson Lab Hall A Collaboration,

^{50}Jefferson Lab Hall A Collaboration,

^{51}Jefferson Lab Hall A Collaboration,

^{52}Jefferson Lab Hall A Collaboration,

^{53}Jefferson Lab Hall A Collaboration,

^{54}Jefferson Lab Hall A Collaboration,

^{55}Jefferson Lab Hall A Collaboration,

^{56}Jefferson Lab Hall A Collaboration,

^{57}Jefferson Lab Hall A Collaboration,

^{58}Jefferson Lab Hall A Collaboration,

^{59}Jefferson Lab Hall A Collaboration,

^{60}Jefferson Lab Hall A Collaboration,

^{61}Jefferson Lab Hall A Collaboration,

^{62}Jefferson Lab Hall A Collaboration,

^{63}Jefferson Lab Hall A Collaboration,

^{64}Jefferson Lab Hall A Collaboration,

^{65}Jefferson Lab Hall A Collaboration,

^{66}Jefferson Lab Hall A Collaboration,

^{67}Jefferson Lab Hall A Collaboration,

^{68}Jefferson Lab Hall A Collaboration,

^{69}Jefferson Lab Hall A Collaboration,

^{70}Jefferson Lab Hall A Collaboration,

^{71}Jefferson Lab Hall A Collaboration,

^{72}Jefferson Lab Hall A Collaboration,

^{73}Jefferson Lab Hall A Collaboration,

^{74}Jefferson Lab Hall A Collaboration,

^{75}Jefferson Lab Hall A Collaboration,

^{76}Jefferson Lab Hall A Collaboration,

^{77}Jefferson Lab Hall A Collaboration,

^{78}Jefferson Lab Hall A Collaboration,

^{79}Jefferson Lab Hall A Collaboration,

^{80}Jefferson Lab Hall A Collaboration,

^{81}Jefferson Lab Hall A Collaboration,

^{82}Jefferson Lab Hall A Collaboration,

^{83}Jefferson Lab Hall A Collaboration,

^{84}Jefferson Lab Hall A Collaboration,

^{85}Jefferson Lab Hall A Collaboration,

^{86}Jefferson Lab Hall A Collaboration,

^{87}Jefferson Lab Hall A Collaboration,

^{88}Jefferson Lab Hall A Collaboration,

^{89}Jefferson Lab Hall A Collaboration,

^{90}Jefferson Lab Hall A Collaboration,

^{91}Jefferson Lab Hall A Collaboration,

^{92}Jefferson Lab Hall A Collaboration,

^{93}Jefferson Lab Hall A Collaboration,

^{94}Jefferson Lab Hall A Collaboration,

^{95}Jefferson Lab Hall A Collaboration,

^{96}Jefferson Lab Hall A Collaboration,

^{97}Jefferson Lab Hall A Collaboration,

^{98}Jefferson Lab Hall A Collaboration,

^{99}Jefferson Lab Hall A Collaboration,

^{100}Jefferson Lab Hall A Collaboration,

^{101}Jefferson Lab Hall A Collaboration,

^{102}Jefferson Lab Hall A Collaboration,

^{103}Jefferson Lab Hall A Collaboration,

^{104}Jefferson Lab Hall A Collaboration,

^{105}Jefferson Lab Hall A Collaboration,

^{106}Jefferson Lab Hall A Collaboration,

^{107}Jefferson Lab Hall A Collaboration,

^{108}Jefferson Lab Hall A Collaboration,

^{109}Jefferson Lab Hall A Collaboration,

^{110}Jefferson Lab Hall A Collaboration,

^{111}Jefferson Lab Hall A Collaboration,

^{112}Jefferson Lab Hall A Collaboration,

^{113}Jefferson Lab Hall A Collaboration,

^{114}Jefferson Lab Hall A Collaboration,

^{115}Jefferson Lab Hall A Collaboration,

^{116}Jefferson Lab Hall A Collaboration

We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a transversely polarized $^3$He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Read More

**Authors:**J. Katich, X. Qian, Y. X. Zhao, K. Allada, K. Aniol, J. R. M. Annand, T. Averett, F. Benmokhtar, W. Bertozzi, P. C. Bradshaw, P. Bosted, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, W. Chen, K. Chirapatpimol, E. Chudakov, E. Cisbani, J. C. Cornejo, F. Cusanno, M. M. Dalton, W. Deconinck, C. W. de Jager, R. De Leo, X. Deng, A. Deur, H. Ding, P. A. M. Dolph, C. Dutta, D. Dutta, L. El Fassi, S. Frullani, H. Gao, F. Garibaldi, D. Gaskell, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, L. Guo, D. Hamilton, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Huang, H. F. Ibrahim, M. Iodice, X. Jiang, G. Jin, M. K. Jones, A. Kelleher, W. Kim, A. Kolarkar, W. Korsch, J. J. LeRose, X. Li, Y. Li, R. Lindgren, N. Liyanage, E. Long, H. -J. Lu, D. J. Margaziotis, P. Markowitz, S. Marrone, D. McNulty, Z. -E. Meziani, R. Michaels, B. Moffit, C. Muńoz Camacho, S. Nanda, A. Narayan, V. Nelyubin, B. Norum, Y. Oh, M. Osipenko, D. Parno, J. C. Peng, S. K. Phillips, M. Posik, A. J. R. Puckett, Y. Qiang, A. Rakhman, R. D. Ransome, S. Riordan, A. Saha, B. Sawatzky, E. Schulte, A. Shahinyan, M. H. Shabestari, S. Širca, S. Stepanyan, R. Subedi, V. Sulkosky, L. -G. Tang, A. Tobias, G. M. Urciuoli, I. Vilardi, K. Wang, Y. Wang, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, L. Yuan, X. Zhan, Y. Zhang, Y. -W. Zhang, B. Zhao, X. Zheng, L. Zhu, X. Zhu, X. Zong

**Category:**Nuclear Experiment

We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{\uparrow}\left(e,e' \right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5. Read More

In this paper, we consider Cheeger's constant and the first eigenvalue of the nonlinear Laplacian on closed Finsler manifolds. Being based on these, we establish Cheeger's inequality and Buser's inequality for closed Finsler manifolds. Read More

We consider the following signal recovery problem: given a measurement matrix $\Phi\in \mathbb{R}^{n\times p}$ and a noisy observation vector $c\in \mathbb{R}^{n}$ constructed from $c = \Phi\theta^* + \epsilon$ where $\epsilon\in \mathbb{R}^{n}$ is the noise vector whose entries follow i.i.d. Read More