L. Testi - ESO

L. Testi
Are you L. Testi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
L. Testi
Affiliation
ESO
Location

Pubs By Year

External Links

Pub Categories

 
Astrophysics of Galaxies (39)
 
Solar and Stellar Astrophysics (35)
 
Earth and Planetary Astrophysics (13)
 
Instrumentation and Methods for Astrophysics (3)
 
Cosmology and Nongalactic Astrophysics (2)
 
High Energy Astrophysical Phenomena (1)

Publications Authored By L. Testi

As part of the Accretion Discs in H$\alpha$ with OmegaCAM (ADHOC) survey, we imaged in r, i and H-alpha a region of 12x8 square degrees around the Orion Nebula Cluster. Thanks to the high-quality photometry obtained, we discovered three well-separated pre-main sequences in the color-magnitude diagram. The populations are all concentrated towards the cluster's center. Read More

The Advanced Telescope for High ENergy Astrophysics (Athena) is the X-ray observatory mission selected by ESA within its Cosmic Vision 2015-2025 programme to address the Hot and Energetic Universe scientific theme. The ESO-Athena Synergy Team (EAST) has been tasked to single out the potential scientific synergies between Athena and optical/near-infrared (NIR) and sub/mm ground based facilities, in particular those of ESO (i.e. Read More

The formation of deuterated molecules is favoured at low temperatures and high densities. Therefore, the deuteration fraction D$_{frac}$ is expected to be enhanced in cold, dense prestellar cores and to decrease after protostellar birth. Previous studies have shown that the deuterated forms of species such as N2H+ (formed in the gas phase) and CH3OH (formed on grain surfaces) can be used as evolutionary indicators and to constrain their dominant formation processes and time-scales. Read More

Studying the molecular component of the interstellar medium in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Zsun ~ 0. Read More

The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Shooter spectrograph. The sample is nearly complete down to M~0. Read More

High-mass stars have generally been assumed to accrete most of their mass while already contracted onto the main sequence, but this hypothesis has not been observationally tested. We present ALMA observations of a 3 x 1.5 pc area in the W51 high-mass star-forming complex. Read More

We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm continuum observations of the SR 24S transition disk with an angular resolution $\lesssim0.18"$ (12 au radius). Read More

The $\sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($\sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around $\sigma$ Orionis members with $M_{\ast}\gtrsim0.1 M_{\odot}$. Read More

2017Jan
Affiliations: 1INAF-Osservatorio Astrofisico di Arcetri, 2INAF-Osservatorio Astrofisico di Arcetri, 3Univ. Grenoble Alpes, IPAG, 4INAF-Osservatorio Astrofisico di Arcetri, 5ESO, 6IGN, Observatorio Astronómico Nacional, 7Univ. Grenoble Alpes, IPAG, 8INAF-Osservatorio Astrofisico di Arcetri, 9Leiden Observatory, Leiden University

We present the results of formaldehyde and methanol deuteration measurements towards the Class I low-mass protostar SVS13-A, in the framework of the IRAM 30-m ASAI (Astrochemical Surveys At IRAM) project. We detected emission lines of formaldehyde, methanol, and their deuterated forms (HDCO, D2CO, CHD2OH, CH3OD) with Eup up to 276 K. The formaldehyde analysis indicates Tkin = 15 - 30 K, n (H2) >= 10^6 cm^-3, and a size of about 1200 AU suggesting an origin in the protostellar envelope. Read More

The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Read More

We report the detection of the prebiotic molecule CH3NCO in a solar-type protostar, IRAS16293-2422 B. A significant abundance of this species on the surface of the comet 67P/Churyumov-Gerasimenko has been proposed, and it has recently been detected in hot cores around high-mass protostars. We observed IRAS16293-2422 B with ALMA in the 90 GHz to 265 GHz range, and detected 8 unblended transitions of CH3NCO. Read More

Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: We obtained sub-arcsec angular resolution maps at 1.3mm and 1. Read More

We present the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. Read More

An era has started in which gas and dust can be observed independently in protoplanetary disks, thanks to the recent surveys with ALMA. The first near-complete high-resolution disk survey in both dust and gas in a single star-forming region has been carried out in Lupus, finding surprisingly low gas/dust ratios. The goal of this work is to fully exploit CO isotopologues observations in Lupus, comparing them with physical-chemical model results, in order to obtain gas masses for a large number of disks. Read More

We present ALMA observations of the GQ Lup system, a young Sun-like star with a substellar mass companion in a wide-separation orbit. These observations of 870 $\mu$m continuum and CO J=3-2 line emission with beam size $\sim0.3''$ ($\sim45$ AU) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. Read More

2016Nov
Affiliations: 1Indian Institute of Space science and Technology, India, 2INAF-Osservatorio Astrofisico de Arcetri, Italy, 3INAF-Osservatorio Astrofisico de Arcetri, Italy, 4INAF-Osservatorio Astrofisico de Arcetri, Italy, 5INAF-Instituto di Fisica dello Spazio Interplanetario, Italy

IRAS 18511+0146 is a young embedded (proto)cluster located at 3.5 kpc surrounding what appears to be an intermediate mass protostar. In this paper, we investigate the nature of cluster members (two of which are believed to be the most massive and luminous) using imaging and spectroscopy in the near and mid-infrared. Read More

Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. Read More

Star formation in the Galactic disc is primarily controlled by gravity, turbulence, and magnetic fields. It is not clear that this also applies to star formation near the Galactic Centre. Here we determine the turbulence and star formation in the CMZ cloud G0. Read More

Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic Center may differ substantially from spiral-arm clouds. Here we determine the physical parameters of the central molecular zone (CMZ) cloud G0. Read More

2016Sep
Affiliations: 1Queen Mary University of London, UK, 2Max-Planck-Institut fur Extraterrestrische Physik, Germany, 3Max-Planck-Institut fur Extraterrestrische Physik, Germany, 4Instituto de Ciencia de Materiales de Madrid, Spain, 5Instituto de Radioastronomia Milimetrica, Spain, 6University College London, UK, 7European Southern Observatory, Germany, 8Universite de Toulouse, 9Univ. Grenoble Alpes, 10Observatorio Astronomico Nacional, Spain

The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with Av>=30 mag within the inner 2700 au; and a low-density shell with average Av~7. Read More

The dispersal of the circumstellar discs of dust and gas surrounding young low- mass stars has important implications for the formation of planetary systems. Photo- evaporation from energetic radiation from the central object is thought to drive the dispersal in the majority of discs, by creating a gap which disconnects the outer from the inner regions of the disc and then disperses the outer disc from the inside-out, while the inner disc keeps draining viscously onto the star. In this Letter we show that the disc around TW Hya, the closest protoplanetary disc to Earth, may be the first object where a photoevaporative gap has been imaged around the time at which it is being created. Read More

Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0. Read More

Fast jets are thought to be a crucial ingredient of star formation because they might extract angular momentum from the disk and thus allow mass accretion onto the star. However, it is unclear whether jets are ubiquitous, and likewise, their contribution to mass and angular momentum extraction during protostar formation remains an open question. Our aim is to investigate the ejection process in the low-mass Class 0 protostar L1157. Read More

The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887micron survey of the disk population around objects from 2 to 0.03Msun in the nearby 2Myr-old Chamaeleon I star-forming region. Read More

We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph MUSE mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionised gas, study the ionisation fronts at the pillar tips, analyse the properties of the single regions, and detect two ionised jets originating from two distinct pillar tips. For each pillar tip we determine the incident ionising photon flux $Q_\mathrm{0,pil}$ originating from the nearby massive O- and B-type stars and compute the mass-loss rate $\dot{M}$ of the pillar tips due to photo-evaporation caused by the incident ionising radiation. Read More

Brown dwarf disks are excellent laboratories to test our understanding of disk physics in an extreme parameter regime. In this paper we investigate a sample of 29 well-characterized brown dwarfs and very low mass stars, for which Herschel far-infrared fluxes as well as (sub)-mm fluxes are available. We have measured new Herschel PACS fluxes for 11 objects and complement these with (sub)-mm data and Herschel fluxes from the literature. Read More

Large-scale gaseous filaments with length up to the order of 100 pc are on the upper end of the filamentary hierarchy of the Galactic interstellar medium. Their association with respect to the Galactic structure and their role in Galactic star formation are of great interest from both observational and theoretical point of view. Previous "by-eye" searches, combined together, have started to uncover the Galactic distribution of large filaments, yet inherent bias and small sample size limit conclusive statistical results to be drawn. Read More

We present a 3 mm spectral line and continuum survey of L1451 in the Perseus Molecular Cloud. These observations are from the CARMA Large Area Star Formation Survey (CLASSy), which also imaged Barnard 1, NGC 1333, Serpens Main and Serpens South. L1451 is the survey region with the lowest level of star formation activity---it contains no confirmed protostars. Read More

We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground based (CSO, JCMT, APEX, IRAM-30m) and space telescopes (Herschel, Planck). For the seven luminous ($L$$>$10$^{6}$ $L_{\odot}$) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0. Read More

In the context of the ASAI (Astrochemical Surveys At IRAM) project, we carried out an unbiased spectral survey in the millimeter window towards the well known low-mass Class I source SVS13-A. The high sensitivity reached (3-12 mK) allowed us to detect at least 6 HDO broad (FWHM ~ 4-5 km/s) emission lines with upper level energies up to Eu = 837 K. A non-LTE LVG analysis implies the presence of very hot (150-260 K) and dense (> 3 10^7 cm-3) gas inside a small radius ($\sim$ 25 AU) around the star, supporting, for the first time, the occurrence of a hot corino around a Class I protostar. Read More

The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the $\rho$-Oph star-forming region. Read More

A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. Read More

2016Apr
Affiliations: 1INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, 2INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, 3INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, 4INAF-Osservatorio Astrofisico di Arcetri, Firenze, 5INAF-Osservatorio Astrofisico di Arcetri, Firenze, 6MPIA, Heidelberg

The evolutionary classification of massive clumps that are candidate progenitors of high-mass young stars and clusters relies on a variety of independent diagnostics based on observables from the near-infrared to the radio. A promising evolutionary indicator for massive and dense cluster-progenitor clumps is the L/M ratio between the bolometric luminosity and the mass of the clumps. With the aim of providing a quantitative calibration for this indicator we used SEPIA/APEX to obtain CH3C2H(12-11) observations, that is an excellent thermometer molecule probing densities > 10^5 cm^-3 , toward 51 dense clumps with M>1000 solar masses, and uniformly spanning -2 < Log(L/M) < 2. Read More

(Abridged) We present the first public release of high-quality data products (DR1) from Hi-GAL, the {\em Herschel} infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic Plane surveys from the near-IR to the radio, and covers five wavebands at 70, 160, 250, 350 and 500 micron, encompassing the peak of the spectral energy distribution of cold dust for 8 < T < 50K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68{\deg} > l > -70{\deg} in a |b|<1{\deg} latitude strip. Read More

We present the first high-resolution sub-mm survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use ALMA to survey 89 protoplanetary disks around stars with $M_{\ast}>0. Read More

Previous studies of the initial conditions of massive star formation have mainly targeted Infrared-Dark Clouds (IRDCs) toward the inner Galaxy. This is due to the fact that IRDCs were first detected in absorption against the bright mid-IR background, requiring a favourable location to be observed. By selection, IRDCs represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Read More

The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Read More

Given that a majority of stars form in multiple systems, in order to fully understand the star- and planet-formation processes we must seek to understand them in multiple stellar systems. With this in mind, we present an analysis of the enigmatic binary T-Tauri system VV Corona Australis, in which both components host discs, but only one is visible at optical wavelengths. We seek to understand the peculiarities of this system by searching for a model for the binary which explains all the available continuum observations of the system. Read More

2016Feb
Affiliations: 1Jodrell Bank Centre for Astrophysics and UK ALMA Regional Centre Node, School of Physics and Astronomy, University of Manchester, Manchester, UK, 2Jodrell Bank Centre for Astrophysics and UK ALMA Regional Centre Node, School of Physics and Astronomy, University of Manchester, Manchester, UK, 3INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy, 4INAF - IRA & Italian ALMA Regional Centre Bologna, Italy, 5Max-Planck-Institut fur extraterrestrische Physik, Garching, Germany, 6Cavendish Laboratory, University of Cambridge & Kavli Institute for Cosmology, University of Cambridge, Cambridge, UK, 7Instituto de Astrofísica de Andalucía, Granada, Spain, 8European Southern Observatory, 9INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy, 10Department of Physics and Astronomy, University College London, London, UK, 11European Southern Observatory, 12Astrophysics Research Institute, Liverpool John Moores University, Liverpool, UK, 13INAF - IRA & Italian ALMA Regional Centre Bologna, Italy, 14INAF - IRA & Italian ALMA Regional Centre Bologna, Italy, 15Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, 16Jodrell Bank Centre for Astrophysics and UK ALMA Regional Centre Node, School of Physics and Astronomy, University of Manchester, Manchester, UK, 17INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy, 18INAF Osservatorio Astronomico di Bologna, Bologna, Italy, 19Department of Physics and Astronomy, University College London, London, UK, 20Square Kilometre Array Organisation, Cheshire, UK

We discuss the science drivers for ALMA Band 2 which spans the frequency range from 67 to 90 GHz. The key science in this frequency range are the study of the deuterated molecules in cold, dense, quiescent gas and the study of redshifted emission from galaxies in CO and other species. However, Band 2 has a range of other applications which are also presented. Read More

To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. Our goal is to study grain growth in the disk of the young, intermediate mass star HD163296 where dust processing has already been observed, and to look for evidence of growth by ice condensation across the CO snowline, already identified in this disk with ALMA. Under the hypothesis of optically thin emission we compare images at different wavelengths from ALMA and VLA to measure the opacity spectral index across the disk and thus the maximum grain size. Read More

The scientific impact of a facility is the most important measure of its success. Monitoring and analysing the scientific return can help to modify and optimise operations and adapt to the changing needs of scientific research. The methodology that we have developed to monitor the scientific productivity of the ALMA Observatory, as well as the first results, are described. Read More

Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Read More

A fraction of the missing sulfur in dense clouds and circumstellar regions could be in the form of three species not yet de- tected in the interstellar medium: H2S2, HS2, and S2 according to experimental simulations performed under astrophysically relevant conditions. These S-S bonded molecules can be formed by the energetic processing of H2S-bearing ice mantles on dust grains, and subsequently desorb to the gas phase. The detection of these species could partially solve the sulfur depletion problem, and would help to improve our knowledge of the poorly known chemistry of sulfur in the interstellar medium. Read More

The formation environment of stars in massive stellar clusters is similar to the environment of stars forming in galaxies at a redshift of 1 - 3, at the peak star formation rate density of the Universe. As massive clusters are still forming at the present day at a fraction of the distance to high-redshift galaxies they offer an opportunity to understand the processes controlling star formation and feedback in conditions similar to those in which most stars in the Universe formed. Here we describe a system of massive clusters and their progenitor gas clouds in the centre of the Milky Way, and outline how detailed observations of this system may be able to: (i) help answer some of the fundamental open questions in star formation and (ii) quantify how stellar feedback couples to the surrounding interstellar medium in this high-pressure, high-redshift analogue environment. Read More

We present a study of the wind launching region of the Herbig Be star HD 58647 using high angular (lambda/2B=0.003") and high spectral (R=12000) resolution interferometric VLTI-AMBER observations of the near-infrared hydrogen emission line, Br-gamma. The star displays double peaks in both Br-gamma line profile and wavelength-dependent visibilities. Read More

Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. Read More

The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M$_\odot$ on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Read More

2015Nov
Affiliations: 1INAF-IAPS, Rome, 2STScI, Baltimore, 3Univ. of Colorado, Boulder, 4John Moores Univ. Liverpool, 5INAF-IAPS, Rome, 6INAF-IAPS, Rome, 7Univ. of Calgary, 8STFC-RAL, Didcot, 9INAF-IAPS, Rome, 10INAF-IAPS, Rome, 11INAF-IAPS, Rome, 12INAF Arcetri

We use the Herschel Hi-GAL survey data to study the spatial distribution in Galactic longitude and latitude of the interstellar medium and of dense, star-forming clumps in the inner Galaxy. The peak position and width of the latitude distribution of the dust column density as well as of number density of compact sources from the band-merged Hi-GAL photometric catalogues are analysed as a function of longitude. The width of the diffuse dust column density traced by the Hi-GAL 500 micron emission varies across the inner Galaxy, with a mean value of 1{\deg}. Read More

A nebular analysis of the central Orion Nebula and its main structures is presented. We exploit MUSE integral field observations in the wavelength range 4595-9366 \r{A} to produce the first O, S and N ionic and total abundance maps of a region spanning 6' x 5' with a spatial resolution of 0.2". Read More