L. Rodriguez - CRyA-UNAM

L. Rodriguez
Are you L. Rodriguez?

Claim your profile, edit publications, add additional information:

Contact Details

Name
L. Rodriguez
Affiliation
CRyA-UNAM
Location

Pubs By Year

External Links

Pub Categories

 
Solar and Stellar Astrophysics (35)
 
Astrophysics of Galaxies (24)
 
Cosmology and Nongalactic Astrophysics (5)
 
Instrumentation and Methods for Astrophysics (4)
 
Earth and Planetary Astrophysics (3)
 
High Energy Astrophysical Phenomena (2)
 
Physics - Instrumentation and Detectors (2)
 
Physics - Space Physics (2)
 
Statistics - Theory (1)
 
Mathematics - Functional Analysis (1)
 
Mathematics - Classical Analysis and ODEs (1)
 
Mathematics - Statistics (1)
 
Computer Science - Computation and Language (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)
 
Computer Science - Information Retrieval (1)
 
Computer Science - Learning (1)
 
Computer Science - Neural and Evolutionary Computing (1)
 
High Energy Physics - Theory (1)

Publications Authored By L. Rodriguez

We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. Read More

We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs and four young brown dwarf candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Read More

We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the mm emission of this disk with the highest angular resolution so far ($0\rlap."12\times0\rlap. Read More

We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We study the solar surface and atmosphere associated with the flare-CME from SDO and ground-based instruments, and also track the CME signature off-limb from combined EUV and white-light data with STEREO. By applying 3D reconstruction techniques (GCS, total mass) to stereoscopic STEREO-SoHO coronagraph data, we track the temporal and spatial evolution of the CME in interplanetary space and derive its geometry and 3D-mass. Read More

We present a major step forward towards accurately predicting the arrivals of coronal mass ejections (CMEs) on the terrestrial planets, including the Earth. For the first time, we are able to assess a CME prediction model using data over almost a full solar cycle of observations with the Heliophysics System Observatory. We validate modeling results on 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) with data from 8 years of observations by 5 spacecraft in situ in the solar wind, thereby gathering over 600 independent in situ CME detections. Read More

(Abridged) The formation of large-scale (hundreds to few thousands of AU) bipolar structures in the circumstellar envelopes (CSEs) of post-Asymptotic Giant Branch (post-AGB) stars is poorly understood. The shape of these structures, traced by emission from fast molecular outflows, suggests that the dynamics at the innermost regions of these CSEs does not depend only on the energy of the radiation field of the central star. Deep into the Water Fountains is an observational project based on the results of programs carried out with three telescope facilities: The Karl G. Read More

With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al. (2009), and using $^{12}$CO(J=2-1) archival data from the Submillimeter Array (SMA), we contrast two well known explosive objects, Orion KL and DR21, to HH211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. Read More

We resolved FU Ori at 29-37 GHz using the JVLA with $\sim$0$''$.07 resolution, and performed the complementary JVLA 8-10 GHz observations, the SMA 224 GHz and 272 GHz observations, and compared with archival ALMA 346 GHz observations to obtain the SEDs. Our 8-10 GHz observations do not find evidence for the presence of thermal radio jets, and constrain the radio jet/wind flux to at least 90 times lower than the expected value from the previously reported bolometric luminosity-radio luminosity correlation. Read More

Ultra-Compact (UC)HII regions represent a very early stage of massive star formation whose structure and evolution are not yet fully understood. Interferometric observations in recent years show that some UCHII regions have associated compact sources of uncertain nature. Based on this, we carried out VLA 1. Read More

We have extended the time baseline for observations of the proper motions of radio sources in the Orion BN/KL region from 14.7 to 22.5 years. Read More

We present the first results of the Gould's Belt Distances Survey (GOBELINS), a project aimed at measuring the proper motion and trigonometric parallax of a large sample of young stars in nearby regions using multi-epoch Very Long Baseline Array (VLBA) radio observations. Enough VLBA detections have now been obtained for 16 stellar systems in Ophiuchus to derive their parallax and proper motion. This leads to distance determinations for individual stars with an accuracy of 0. Read More

Using multi-epoch VLA observations, covering a time baseline of 29.1 years, we have measured the proper motions of 88 young stars with compact radio emission in the core of the Orion Nebula Cluster (ONC) and the neighboring BN/KL region. Our work increases the number of young stars with measured proper motion at radio frequencies by a factor of 2. Read More

We report on new distances and proper motions to seven stars across the Serpens/Aquila complex. The observations were obtained as part of the Gould's Belt Distances Survey (GOBELINS) project between September 2013 and April 2016 with the Very Long Baseline Array (VLBA). One of our targets is the proto-Herbig AeBe object EC 95, which is a binary system embedded in the Serpens Core. Read More

We have performed, for the first time, the successful automated detection of Coronal Mass Ejections (CMEs) in data from the inner heliospheric imager (HI-1) cameras on the STEREO A spacecraft. Detection of CMEs is done in time-height maps based on the application of the Hough transform, using a modified version of the CACTus software package, conventionally applied to coronagraph data. In this paper we describe the method of detection. Read More

We present the results of the Gould's Belt Distances Survey (GOBELINS) of young star forming regions towards the Orion Molecular Cloud Complex. We detected 36 YSOs with the Very Large Baseline Array (VLBA), 27 of which have been observed in at least 3 epochs over the course of 2 years. At least half of these YSOs belong to multiple systems. Read More

Magnetic fields, which play a major role in a large number of astrophysical processes from galactic to cosmological scales, can be traced via observations of dust polarization as demonstrated by the Planck satellite results. In particular, low-resolution observations of dust polarization have demonstrated that Galactic filamentary structures, where star formation takes place, are associated to well organized magnetic fields. A better understanding of this process requires detailed observations of galactic dust polarization on scales of 0. Read More

We present sensitive (rms-noises $\sim$ 4 -- 25 $\mu$Jy) and high angular resolution ($\sim$1--2$"$) 8.9 GHz (3.3 cm) Karl G. Read More

The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large-scale structures. It is essential for a robust calibration of the mass-observable scaling relations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high resolution $(< 20$ arcsec) thermal Sunyaev-Zel'dovich (tSZ) observations by probing the intracluster medium (ICM) of the \planck-discovered galaxy cluster \psz\ at redshift $z = 0. Read More

Photoevaporation is probably the main agent for gas dispersal during the last stages of protoplanetary disk evolution. However, the overall mass loss rate in the photoevaporative wind and its driving mechanism are still not well understood. Here we report multi-configuration Very Large Array observations at 0. Read More

We present Submillimeter Array (SMA) 1.35 mm subarcsecond angular resolution observations toward the LkH{\alpha} 234 intermediate-mass star-forming region. The dust emission arises from a filamentary structure of $\sim$5 arcsec ($\sim$4500 au) enclosing VLA 1-3 and MM 1, perpendicular to the different outflows detected in the region. Read More

Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the Sunyaev-Zel'dovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717. Read More

While textual reviews have become prominent in many recommendation-based systems, automated frameworks to provide relevant visual cues against text reviews where pictures are not available is a new form of task confronted by data mining and machine learning researchers. Suggestions of pictures that are relevant to the content of a review could significantly benefit the users by increasing the effectiveness of a review. We propose a deep learning-based framework to automatically: (1) tag the images available in a review dataset, (2) generate a caption for each image that does not have one, and (3) enhance each review by recommending relevant images that might not be uploaded by the corresponding reviewer. Read More

Single-dish sub-millimeter observations have recently revealed the existence of a substantial, chemically peculiar, molecular gas component located in the innermost circumstellar environment of the very massive luminous blue variable star $\eta$ Carinae. Here, we present 5$"$-resolution interferometric observations of the 1$\rightarrow$0 rotational transition of hydrogen cyanide (HCN) obtained with the Australia Telescope Compact Array (ATCA) toward this star. The emission is concentrated in the central few arcseconds around $\eta$ Carinae and shows a clear 150 km s$^{-1}$ velocity gradient running from west-north-west (blue) to east-south-east (red). Read More

We study the thermodynamics of near horizon near extremal Kerr (NHNEK) geometry within the framework of $AdS_2/CFT_1$ correspondence. We start by shifting the horizon of near horizon extremal Kerr (NHEK) geometry by a general finite mass. While this shift does not alter the geometry in that the resulting classical solution is still diffeomorphic to the NHEK solution, it does lead to a quantum theory different from that of NHEK. Read More

We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/Submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ~ 3.4 au and presents a central cavity of ~ 1. Read More

We present a series of sixteen Very Long Baseline Array (VLBA) high angular resolution observations of a cluster of suspected low-mass young stars in the Monoceros R2 region. Four compact and highly variable radio sources are detected; three of them in only one epoch, the fourth one a total of seven times. This latter source is seen in the direction to the previously known \UCHII\ region VLA~1, and has radio properties that resemble those of magnetically active stars; we shall call it VLA~1$^\star$. Read More

The systematic monitoring of the solar wind in high-cadence and high-resolution heliospheric images taken by the Solar-Terrestrial Relation Observatory (STEREO) spacecraft permits the study of the spatial and temporal evolution of variable solar wind flows from the Sun out to 1~AU, and beyond. As part of the EU Framework 7 (FP7) Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project, we have generated a catalogue listing the properties of 190 corotating structures well-observed in images taken by the Heliospheric Imager instruments on-board STEREO-A. We present here one of very few long-term analyses of solar wind structures advected by the background solar wind. Read More

Barnard 59 and Lupus 1 are two nearby star-forming regions visible from the southern hemisphere. In this manuscript, we present deep ($\sigma$ $\lesssim$ 15 $ \mu$Jy) radio observations ($\nu$ = 6 GHz; $\lambda$ = 5 cm) of these regions, and report the detection of a total of 114 sources. Thirteen of these sources are associated with known young stellar objects, nine in Barnard 59 and four in Lupus 1. Read More

NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 arcsec FWHM (at 150 and 260 GHz, respectively). Read More

The giant Herbig-Haro object 222 extends over $\sim$6$'$ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. Read More

In this note, we propose a new approach for the proof of the consistency and normality of the maximum likelihood estimator for nonlinear AR processes with markov-switching under the assumptions of uniform exponential forgetting of the prediction filter and $\alpha$-mixing property. We show that in the linear and Gaussian case our assumptions are fully satisfied. Read More

Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which ~ 0.1 pc-wide filaments form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Read More

Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e. Read More

We present radio continuum observations of the high-mass young stellar object (HMYSO) G345.4938+01.4677 made using the Australia Telescope Compact Array (ATCA) at 5, 9, 17, and 19 GHz. Read More

The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Read More

NIKA 2 (New Instrument of Kids Array) is a next generation continuum and polarized instrument successfully installed in October 2015 at the IRAM 30 m telescope on Pico-Veleta (Granada, Spain). NIKA 2 is a high resolution dual-band camera, operating with frequency multiplexed LEKIDs (Lumped Element Kinetic Inductance Detectors) cooled at 100 mK. Dual color images are obtained thanks to the simultaneous readout of a 1020 pixels array at 2 mm and 1140 x 2 pixels arrays at 1. Read More

In this paper we introduce Hardy-Lorentz spaces with variable exponents associated to dilation in ${\Bbb R}^n$. We establish maximal characterizations and atomic decompositions for our variable exponent anisotropic Hardy-Lorentz spaces. Read More

NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID). The pathfinder instrument, NIKA, has already shown state-of-the-art detector performance. NIKA2 builds upon this experience but goes one step further, increasing the total pixel count by a factor $\sim$10 while maintaining the same per pixel performance. Read More

We report Submillimeter Array (SMA) 1.3 mm high angular resolution observations towards the four EXor type outbursting young stellar objects (YSOs) VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses $M_{dust}$ in the associated circumstellar disks. Read More

While most protostellar jets present free-free emission at radio wavelengths, synchrotron emission has been also proposed to be present in a handful of these objects. The presence of non-thermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. Read More

We present multi-epoch, large-scale ($\sim$ 2000 arcmin${}^2$), fairly deep ($\sim$ 16 $\mu$Jy), high-resolution ($\sim$ 1") radio observations of the Perseus star-forming complex obtained with the Karl G. Jansky Very Large Array at frequencies of 4.5 GHz and 7. Read More

The prototype of the NIKA2 camera, NIKA, is an instrument operating at the IRAM 30-m telescope, which can observe simultaneously at 150 and 260GHz. One of the main goals of NIKA2 is to measure the pressure distribution in galaxy clusters at high resolution using the thermal SZ (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. Read More

(abridged) The HH 80/81/80N jet extends from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by IRAS 18162-2048 associated with a massive young stellar object. Read More

LRLL 54361 is an infrared source located in the star forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 during roughly one week every 25.34 days. Read More

We present high angular resolution ($\sim$0.94$"$) $^{12}$CO(1-0) Atacama Large Millimeter/Submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. Read More

The aim of this work is to solve the dispersion relations near the first excitation threshold of photon propagating along the magnetic field in the strong field limit. We have calculated the time damping of the photon in two particular cases: the degenerate gas as well as the diluted gas limit being both important from the Astrophysical point of view. In particular the diluted gas limit could describe the magnethosphere of neutron stars. Read More