# L. Gan - HUST

## Contact Details

NameL. Gan |
||

AffiliationHUST |
||

Location |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesNuclear Experiment (16) High Energy Physics - Phenomenology (10) High Energy Physics - Experiment (6) Computer Science - Information Theory (6) Mathematics - Information Theory (6) Physics - Materials Science (6) Physics - Mesoscopic Systems and Quantum Hall Effect (6) Mathematics - Optimization and Control (5) Physics - Instrumentation and Detectors (2) Physics - Fluid Dynamics (1) Computer Science - Multimedia (1) Nonlinear Sciences - Chaotic Dynamics (1) High Energy Astrophysical Phenomena (1) Nuclear Theory (1) Computer Science - Learning (1) Computer Science - Computer Vision and Pattern Recognition (1) |

## Publications Authored By L. Gan

We show that compounds in a family that possess time-reversal symmetry and share a non-centrosymmetric cubic structure with the space group F-43m (No. 216) host robust ideal Weyl semi-metal fermions with desirable topologically protected features. The candidates in this family are compounds with different chemical formulas AB2, ABC, ABC2, and ABCD and their Fermi levels are predominantly populated by nontrivial Weyl fermions. Read More

**Authors:**GlueX Collaboration, H. Al Ghoul, E. G. Anassontzis, A. Austregesilo, F. Barbosa, A. Barnes, T. D. Beattie, D. W. Bennett, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, W. K. Brooks, B. E. Cannon, O. Chernyshov, E. Chudakov, V. Crede, M. M. Dalton, A. Deur, S. Dobbs, A. Dolgolenko, M. Dugger, R. Dzhygadlo, H. Egiyan, P. Eugenio, C. Fanelli, A. M. Foda, J. Frye, S. Furletov, L. Gan, A. Gasparian, A. Gerasimov, N. Gevorgyan, K. Goetzen, V. S. Goryachev, L. Guo, H. Hakobyan, J. Hardin, A. Henderson, G. M. Huber, D. G. Ireland, M. M. Ito, N. S. Jarvis, R. T. Jones, V. Kakoyan, M. Kamel, F. J. Klein, R. Kliemt, C. Kourkoumeli, S. Kuleshov, I. Kuznetsov, M. Lara, I. Larin, D. Lawrence, W. I. Levine, K. Livingston, G. J. Lolos, V. Lyubovitskij, D. Mack, P. T. Mattione, V. Matveev, M. McCaughan, M. McCracken, W. McGinley, J. McIntyre, R. Mendez, C. A. Meyer, R. Miskimen, R. E. Mitchell, F. Mokaya, K. Moriya, F. Nerling, G. Nigmatkulov, N. Ochoa, A. I. Ostrovidov, Z. Papandreou, M. Patsyuk, R. Pedroni, M. R. Pennington, L. Pentchev, K. J. Peters, E. Pooser, B. Pratt, Y. Qiang, J. Reinhold, B. G. Ritchie, L. Robison, D. Romanov, C. Salgado, R. A. Schumacher, C. Schwarz, J. Schwiening, A. Yu. Semenov, I. A. Semenova, K. K. Seth, M. R. Shepherd, E. S. Smith, D. I. Sober, A. Somov, S. Somov, O. Soto, N. Sparks, M. J. Staib, J. R. Stevens, I. I. Strakovsky, A. Subedi, V. Tarasov, S. Taylor, A. Teymurazyan, I. Tolstukhin, A. Tomaradze, A. Toro, A. Tsaris, G. Vasileiadis, I. Vega, N. K. Walford, D. Werthmuller, T. Whitlatch, M. Williams, E. Wolin, T. Xiao, J. Zarling, Z. Zhang, B. Zihlmann, V. Mathieu, J. Nys

**Category:**Nuclear Experiment

We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models. Read More

Based on first-principles calculations, we reported that external pressure can induce topological phase transition in alkaline-earth hexaborides, XB6 (X=Ca, Sr, Ba). It was revealed that XB6 is transformed from trivial semiconductors to topological node-line semimetals under moderate pressures when spin-orbit coupling (SOC) is ignored. The band inversion between B px (pz) and py orbitals at X point is responsible for the formation of node-line semimetals. Read More

Using evolutionary algorithm and first-principles calculations, we predict a family group of two-dimensional node-line semimetals MX (M=Pd, Pt; X=S, Se, Te), which has zig-zag type mono-layer structure in Pmm2 layer group. Band structure analysis reveals that node-line features are caused by band inversion and the inversion exists even in the absence of spin-orbital-coupling. Tests are carried out to confirm that the node-line loop is protected by crystal symmetry. Read More

A computationally quick and conceptually simple method to recover time delay of the chaotic system from scalar time series is developed in this paper. We show that the orbits in the incomplete two-dimensional reconstructed phase-space will show local clustering phenomenon after the component permutation procedure proposed in this work. We find that information captured by the incomplete two-dimensional reconstructed phase-space, is related to the time delay ${\tau _0}$ present in the system, and will be transferred to the permutation component by the procedure of component permutation. Read More

Handling imbalanced datasets is a challenging problem that if not treated correctly results in reduced classification performance. Imbalanced datasets are commonly handled using minority oversampling, whereas the SMOTE algorithm is a successful oversampling algorithm with numerous extensions. SMOTE extensions do not have a theoretical guarantee during training to work better than SMOTE and in many instances their performance is data dependent. Read More

Metal fluoride and oxides can store multiple lithium-ions through conversion chemistry to enable high energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage-profiles and the consequent low energy efficiency (< 80%). The physical origins of such hysteresis are rarely studied and poorly understood. Read More

**Authors:**T. Gogami

^{1}, C. Chen

^{2}, D. Kawama

^{3}, P. Achenbach

^{4}, A. Ahmidouch

^{5}, I. Albayrak

^{6}, D. Androic

^{7}, A. Asaturyan

^{8}, R. Asaturyan

^{9}, O. Ates

^{10}, P. Baturin

^{11}, R. Badui

^{12}, W. Boeglin

^{13}, J. Bono

^{14}, E. Brash

^{15}, P. Carter

^{16}, A. Chiba

^{17}, E. Christy

^{18}, S. Danagoulian

^{19}, R. De Leo

^{20}, D. Doi

^{21}, M. Elaasar

^{22}, R. Ent

^{23}, Y. Fujii

^{24}, M. Fujita

^{25}, M. Furic

^{26}, M. Gabrielyan

^{27}, L. Gan

^{28}, F. Garibaldi

^{29}, D. Gaskell

^{30}, A. Gasparian

^{31}, Y. Han

^{32}, O. Hashimoto

^{33}, T. Horn

^{34}, B. Hu

^{35}, Ed. V. Hungerford

^{36}, M. Jones

^{37}, H. Kanda

^{38}, M. Kaneta

^{39}, S. Kato

^{40}, M. Kawai

^{41}, H. Khanal

^{42}, M. Kohl

^{43}, A. Liyanage

^{44}, W. Luo

^{45}, K. Maeda

^{46}, A. Margaryan

^{47}, P. Markowitz

^{48}, T. Maruta

^{49}, A. Matsumura

^{50}, V. Maxwell

^{51}, A. Mkrtchyan

^{52}, H. Mkrtchyan

^{53}, S. Nagao

^{54}, S. N. Nakamura

^{55}, A. Narayan

^{56}, C. Neville

^{57}, G. Niculescu

^{58}, M. I. Niculescu

^{59}, A. Nunez

^{60}, Nuruzzaman

^{61}, Y. Okayasu

^{62}, T. Petkovic

^{63}, J. Pochodzalla

^{64}, X. Qiu

^{65}, J. Reinhold

^{66}, V. M. Rodriguez

^{67}, C. Samanta

^{68}, B. Sawatzky

^{69}, T. Seva

^{70}, A. Shichijo

^{71}, V. Tadevosyan

^{72}, L. Tang

^{73}, N. Taniya

^{74}, K. Tsukada

^{75}, M. Veilleux

^{76}, W. Vulcan

^{77}, F. R. Wesselmann

^{78}, S. A. Wood

^{79}, T. Yamamoto

^{80}, L. Ya

^{81}, Z. Ye

^{82}, K. Yokota

^{83}, L. Yuan

^{84}, S. Zhamkochyan

^{85}, L. Zhu

^{86}

**Affiliations:**

^{1}HKS,

^{2}HKS,

^{3}HKS,

^{4}HKS,

^{5}HKS,

^{6}HKS,

^{7}HKS,

^{8}HKS,

^{9}HKS,

^{10}HKS,

^{11}HKS,

^{12}HKS,

^{13}HKS,

^{14}HKS,

^{15}HKS,

^{16}HKS,

^{17}HKS,

^{18}HKS,

^{19}HKS,

^{20}HKS,

^{21}HKS,

^{22}HKS,

^{23}HKS,

^{24}HKS,

^{25}HKS,

^{26}HKS,

^{27}HKS,

^{28}HKS,

^{29}HKS,

^{30}HKS,

^{31}HKS,

^{32}HKS,

^{33}HKS,

^{34}HKS,

^{35}HKS,

^{36}HKS,

^{37}HKS,

^{38}HKS,

^{39}HKS,

^{40}HKS,

^{41}HKS,

^{42}HKS,

^{43}HKS,

^{44}HKS,

^{45}HKS,

^{46}HKS,

^{47}HKS,

^{48}HKS,

^{49}HKS,

^{50}HKS,

^{51}HKS,

^{52}HKS,

^{53}HKS,

^{54}HKS,

^{55}HKS,

^{56}HKS,

^{57}HKS,

^{58}HKS,

^{59}HKS,

^{60}HKS,

^{61}HKS,

^{62}HKS,

^{63}HKS,

^{64}HKS,

^{65}HKS,

^{66}HKS,

^{67}HKS,

^{68}HKS,

^{69}HKS,

^{70}HKS,

^{71}HKS,

^{72}HKS,

^{73}HKS,

^{74}HKS,

^{75}HKS,

^{76}HKS,

^{77}HKS,

^{78}HKS,

^{79}HKS,

^{80}HKS,

^{81}HKS,

^{82}HKS,

^{83}HKS,

^{84}HKS,

^{85}HKS,

^{86}HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

**Authors:**The GlueX Collaboration, H. Al Ghoul, E. G. Anassontzis, F. Barbosa, A. Barnes, T. D. Beattie, D. W. Bennett, V. V. Berdnikov, T. Black, W. Boeglin, W. K. Brooks, B. Cannon, O. Chernyshov, E. Chudakov, V. Crede, M. M. Dalton, A. Deur, S. Dobbs, A. Dolgolenko, M. Dugger, H. Egiyan, P. Eugenio, A. M. Foda, J. Frye, S. Furletov, L. Gan, A. Gasparian, A. Gerasimov, N. Gevorgyan, V. S. Goryachev, B. Guegan, L. Guo, H. Hakobyan, H. Hakobyan2, J. Hardin, G. M. Huber, D. Ireland, M. M. Ito, N. S. Jarvis, R. T. Jones, V. Kakoyan, M. Kamel, F. J. Klein, C. Kourkoumeli, S. Kuleshov, M. Lara, I. Larin, D. Lawrence, J. Leckey, W. I. Levine, K. Livingston, G. J. Lolos, D. Mack, P. T. Mattione, V. Matveev, M. McCaughan, W. McGinley, J. McIntyre, R. Mendez, C. A. Meyer, R. Miskimen, R. E. Mitchell, F. Mokaya, K. Moriya, G. Nigmatkulov, N. Ochoa, A. I. Ostrovidov, Z. Papandreou, R. Pedroni, M. Pennington, L. Pentchev, A. Ponosov, E. Pooser, B. Pratt, Y. Qiang, J. Reinhold, B. G. Ritchie, L. Robison, D. Romanov, C. Salgado, R. A. Schumacher, A. Yu. Semenov, I. A. Semenova, I. Senderovich, K. K. Seth, M. R. Shepherd, E. S. Smith, D. I. Sober, A. Somov, S. Somov, O. Soto, N. Sparks, M. J. Staib, J. R. Stevens, A. Subedi, V. Tarasov, S. Taylor, I. Tolstukhin, A. Tomaradze, A. Toro, A. Tsaris, G. Vasileiadis, I. Vega, G. Voulgaris, N. K. Walford, T. Whitlatch, M. Williams, E. Wolin, T. Xiao, J. Zarling, B. Zihlmann

The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of $\pi^{0}$, $\eta$ and $\omega$ mesons. Read More

**Authors:**T. Gogami, C. Chen, D. Kawama, P. Achenbach, A. Ahmidouch, I. Albayrak, D. Androic, A. Asaturyan, R. Asaturyan, O. Ates, P. Baturin, R. Badui, W. Boeglin, J. Bono, E. Brash, P. Carter, A. Chiba, E. Christy, S. Danagoulian, R. De Leo, D. Doi, M. Elaasar, R. Ent, Y. Fujii, M. Fujita, M. Furic, M. Gabrielyan, L. Gan, F. Garibaldi, D. Gaskell, A. Gasparian, Y. Han, O. Hashimoto, T. Horn, B. Hu, Ed. V. Hungerford, M. Jones, H. Kanda, M. Kaneta, S. Kato, M. Kawai, H. Khanal, M. Kohl, A. Liyanage, W. Luo, K. Maeda, A. Margaryan, P. Markowitz, T. Maruta, A. Matsumura, V. Maxwell, A. Mkrtchyan, H. Mkrtchyan, S. Nagao, S. N. Nakamura, A. Narayan, C. Neville, G. Niculescu, M. I. Niculescu, A. Nunez, Nuruzzaman, Y. Okayasu, T. Petkovic, J. Pochodzalla, X. Qiu, J. Reinhold, V. M. Rodriguez, C. Samanta, B. Sawatzky, T. Seva, A. Shichijo, V. Tadevosyan, L. Tang, N. Taniya, K. Tsukada, M. Veilleux, W. Vulcan, F. R. Wesselmann, S. A. Wood, T. Yamamoto, L. Ya, Z. Ye, K. Yokota, L. Yuan, S. Zhamkochyan, L. Zhu

**Category:**Nuclear Experiment

Spectroscopy of a $^{10}_{\Lambda}$Be hypernucleus was carried out at JLab Hall C using the $(e,e^{\prime}K^{+})$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). Read More

In this paper, the problem of terahertz pulsed imaging and reconstruction is addressed. It is assumed that an incomplete (subsampled) three dimensional THz data set has been acquired and the aim is to recover all missing samples. A sparsity-inducing approach is proposed for this purpose. Read More

In the framework of heavy quark effective theory, the leading order Isgur-Wise form factors relevant to semileptonic decays of the ground state $\bar{b}s$ meson $B_{s}$ into orbitally excited $D$-wave $\bar{c}s$ mesons, including the newly observed narrow $D^{*}_{s1}(2860)$ and $D^{*}_{s3}(2860)$ states by the LHCb Collaboration, are calculated with the QCD sum rule method. With these universal form factors, the decay rates and branching ratios are estimated. We find that the decay widths are $\Gamma(B_s\rightarrow D^{*}_{s1}\ell\bar{\nu}) =1. Read More

In this paper, we propose a compressed sensing (CS) framework that consists of three parts: a unit-norm tight frame (UTF), a random diagonal matrix and a column-wise orthonormal matrix. We prove that this structure satisfies the restricted isometry property (RIP) with high probability if the number of measurements $m = O(s \log^2s \log^2n)$ for $s$-sparse signals of length $n$ and if the column-wise orthonormal matrix is bounded. Some existing structured sensing models can be studied under this framework, which then gives tighter bounds on the required number of measurements to satisfy the RIP. Read More

**Authors:**The GlueX Collaboration, M. Dugger, B. Ritchie, I. Senderovich, E. Anassontzis, P. Ioannou, C. Kourkoumeli, G. Vasileiadis, G. Voulgaris, N. Jarvis, W. Levine, P. Mattione, W. McGinley, C. A. Meyer, R. Schumacher, M. Staib, F. Klein, D. Sober, N. Sparks, N. Walford, D. Doughty, A. Barnes, R. Jones, J. McIntyre, F. Mokaya, B. Pratt, W. Boeglin, L. Guo, E. Pooser, J. Reinhold, H. Al Ghoul, V. Crede, P. Eugenio, A. Ostrovidov, A. Tsaris, D. Ireland, K. Livingston, D. Bennett, J. Bennett, J. Frye, M. Lara, J. Leckey, R. Mitchell, K. Moriya, M. R. Shepherd, O. Chernyshov, A. Dolgolenko, A. Gerasimov, V. Goryachev, I. Larin, V. Matveev, V. Tarasov, F. Barbosa, E. Chudakov, M. Dalton, A. Deur, J. Dudek, H. Egiyan, S. Furletov, M. Ito, D. Mack, D. Lawrence, M. McCaughan, M. Pennington, L. Pentchev, Y. Qiang, E. Smith, A. Somov, S. Taylor, T. Whitlatch, B. Zihlmann, R. Miskimen, B. Guegan, J. Hardin, J. Stevens, M. Williams, V. Berdnikov, G. Nigmatkulov, A. Ponosov, D. Romanov, S. Somov, I. Tolstukhin, C. Salgado, P. Ambrozewicz, A. Gasparian, R. Pedroni, T. Black, L. Gan, S. Dobbs, K. Seth, X. Ting, A. Tomaradze, T. Beattie, G. Huber, G. Lolos, Z. Papandreou, A. Semenov, I. Semenova, W. Brooks, H. Hakobyan, S. Kuleshov, O. Soto, A. Toro, I. Vega, N. Gevorgyan, H. Hakobyan, V. Kakoyan

We propose to enhance the kaon identification capabilities of the GlueX detector by constructing an FDIRC (Focusing Detection of Internally Reflected Cherenkov) detector utilizing the decommissioned BaBar DIRC components. The GlueX FDIRC would significantly enhance the GlueX physics program by allowing one to search for and study hybrid mesons decaying into kaon final states. Such systematic studies of kaon final states are essential for inferring the quark flavor content of hybrid and conventional mesons. Read More

**Affiliations:**

^{1}HUST,

^{2}HUST,

^{3}NJU

**Category:**High Energy Astrophysical Phenomena

Anomalies of the cosmic microwave background (CMB) maps have been widely acquainted nowadays from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite to the Planck satellite. One of the anomalies is a multipole alignment from $l=2$ to $l=5$. In our work, we investigate the angular distribution of gamma-ray bursts (GRBs) to find whether there is the same anomaly of GRB as CMB. Read More

Distribution networks are usually multiphase and radial. To facilitate power flow computation and optimization, two semidefinite programming (SDP) relaxations of the optimal power flow problem and a linear approximation of the power flow are proposed. We prove that the first SDP relaxation is exact if and only if the second one is exact. Read More

**Authors:**L. Tang

^{1}, C. Chen

^{2}, T. Gogami

^{3}, D. Kawama

^{4}, Y. Han

^{5}, L. Yuan

^{6}, A. Matsumura

^{7}, Y. Okayasu

^{8}, T. Seva

^{9}, V. M. Rodriguez

^{10}, P. Baturin

^{11}, A. Acha

^{12}, P. Achenbach

^{13}, A. Ahmidouch

^{14}, I. Albayrak

^{15}, D. Androic

^{16}, A. Asaturyan

^{17}, R. Asaturyan

^{18}, O. Ates

^{19}, R. Badui

^{20}, O. K. Baker

^{21}, F. Benmokhtar

^{22}, W. Boeglin

^{23}, J. Bono

^{24}, P. Bosted

^{25}, E. Brash

^{26}, P. Carter

^{27}, R. Carlini

^{28}, A. Chiba

^{29}, M. E. Christy

^{30}, L. Cole

^{31}, M. M. Dalton

^{32}, S. Danagoulian

^{33}, A. Daniel

^{34}, R. De Leo

^{35}, V. Dharmawardane

^{36}, D. Doi

^{37}, K. Egiyan

^{38}, M. Elaasar

^{39}, R. Ent

^{40}, H. Fenker

^{41}, Y. Fujii

^{42}, M. Furic

^{43}, M. Gabrielyan

^{44}, L. Gan

^{45}, F. Garibaldi

^{46}, D. Gaskell

^{47}, A. Gasparian

^{48}, E. F. Gibson

^{49}, P. Gueye

^{50}, O. Hashimoto

^{51}, D. Honda

^{52}, T. Horn

^{53}, B. Hu

^{54}, Ed V. Hungerford

^{55}, C. Jayalath

^{56}, M. Jones

^{57}, K. Johnston

^{58}, N. Kalantarians

^{59}, H. Kanda

^{60}, M. Kaneta

^{61}, F. Kato

^{62}, S. Kato

^{63}, M. Kawai

^{64}, C. Keppel

^{65}, H. Khanal

^{66}, M. Kohl

^{67}, L. Kramer

^{68}, K. J. Lan

^{69}, Y. Li

^{70}, A. Liyanage

^{71}, W. Luo

^{72}, D. Mack

^{73}, K. Maeda

^{74}, S. Malace

^{75}, A. Margaryan

^{76}, G. Marikyan

^{77}, P. Markowitz

^{78}, T. Maruta

^{79}, N. Maruyama

^{80}, V. Maxwell

^{81}, D. J. Millener

^{82}, T. Miyoshi

^{83}, A. Mkrtchyan

^{84}, H. Mkrtchyan

^{85}, T. Motoba

^{86}, S. Nagao

^{87}, S. N. Nakamura

^{88}, A. Narayan

^{89}, C. Neville

^{90}, G. Niculescu

^{91}, M. I. Niculescu

^{92}, A. Nunez

^{93}, Nuruzzaman

^{94}, H. Nomura

^{95}, K. Nonaka

^{96}, A. Ohtani

^{97}, M. Oyamada

^{98}, N. Perez

^{99}, T. Petkovic

^{100}, J. Pochodzalla

^{101}, X. Qiu

^{102}, S. Randeniya

^{103}, B. Raue

^{104}, J. Reinhold

^{105}, R. Rivera

^{106}, J. Roche

^{107}, C. Samanta

^{108}, Y. Sato

^{109}, B. Sawatzky

^{110}, E. K. Segbefia

^{111}, D. Schott

^{112}, A. Shichijo

^{113}, N. Simicevic

^{114}, G. Smith

^{115}, Y. Song

^{116}, M. Sumihama

^{117}, V. Tadevosyan

^{118}, T. Takahashi

^{119}, N. Taniya

^{120}, K. Tsukada

^{121}, V. Tvaskis

^{122}, M. Veilleux

^{123}, W. Vulcan

^{124}, S. Wells

^{125}, F. R. Wesselmann

^{126}, S. A. Wood

^{127}, T. Yamamoto

^{128}, C. Yan

^{129}, Z. Ye

^{130}, K. Yokota

^{131}, S. Zhamkochyan

^{132}, L. Zhu

^{133}

**Affiliations:**

^{1}HKS - JLab E05-115 and E01-001 - Collaborations,

^{2}HKS - JLab E05-115 and E01-001 - Collaborations,

^{3}HKS - JLab E05-115 and E01-001 - Collaborations,

^{4}HKS - JLab E05-115 and E01-001 - Collaborations,

^{5}HKS - JLab E05-115 and E01-001 - Collaborations,

^{6}HKS - JLab E05-115 and E01-001 - Collaborations,

^{7}HKS - JLab E05-115 and E01-001 - Collaborations,

^{8}HKS - JLab E05-115 and E01-001 - Collaborations,

^{9}HKS - JLab E05-115 and E01-001 - Collaborations,

^{10}HKS - JLab E05-115 and E01-001 - Collaborations,

^{11}HKS - JLab E05-115 and E01-001 - Collaborations,

^{12}HKS - JLab E05-115 and E01-001 - Collaborations,

^{13}HKS - JLab E05-115 and E01-001 - Collaborations,

^{14}HKS - JLab E05-115 and E01-001 - Collaborations,

^{15}HKS - JLab E05-115 and E01-001 - Collaborations,

^{16}HKS - JLab E05-115 and E01-001 - Collaborations,

^{17}HKS - JLab E05-115 and E01-001 - Collaborations,

^{18}HKS - JLab E05-115 and E01-001 - Collaborations,

^{19}HKS - JLab E05-115 and E01-001 - Collaborations,

^{20}HKS - JLab E05-115 and E01-001 - Collaborations,

^{21}HKS - JLab E05-115 and E01-001 - Collaborations,

^{22}HKS - JLab E05-115 and E01-001 - Collaborations,

^{23}HKS - JLab E05-115 and E01-001 - Collaborations,

^{24}HKS - JLab E05-115 and E01-001 - Collaborations,

^{25}HKS - JLab E05-115 and E01-001 - Collaborations,

^{26}HKS - JLab E05-115 and E01-001 - Collaborations,

^{27}HKS - JLab E05-115 and E01-001 - Collaborations,

^{28}HKS - JLab E05-115 and E01-001 - Collaborations,

^{29}HKS - JLab E05-115 and E01-001 - Collaborations,

^{30}HKS - JLab E05-115 and E01-001 - Collaborations,

^{31}HKS - JLab E05-115 and E01-001 - Collaborations,

^{32}HKS - JLab E05-115 and E01-001 - Collaborations,

^{33}HKS - JLab E05-115 and E01-001 - Collaborations,

^{34}HKS - JLab E05-115 and E01-001 - Collaborations,

^{35}HKS - JLab E05-115 and E01-001 - Collaborations,

^{36}HKS - JLab E05-115 and E01-001 - Collaborations,

^{37}HKS - JLab E05-115 and E01-001 - Collaborations,

^{38}HKS - JLab E05-115 and E01-001 - Collaborations,

^{39}HKS - JLab E05-115 and E01-001 - Collaborations,

^{40}HKS - JLab E05-115 and E01-001 - Collaborations,

^{41}HKS - JLab E05-115 and E01-001 - Collaborations,

^{42}HKS - JLab E05-115 and E01-001 - Collaborations,

^{43}HKS - JLab E05-115 and E01-001 - Collaborations,

^{44}HKS - JLab E05-115 and E01-001 - Collaborations,

^{45}HKS - JLab E05-115 and E01-001 - Collaborations,

^{46}HKS - JLab E05-115 and E01-001 - Collaborations,

^{47}HKS - JLab E05-115 and E01-001 - Collaborations,

^{48}HKS - JLab E05-115 and E01-001 - Collaborations,

^{49}HKS - JLab E05-115 and E01-001 - Collaborations,

^{50}HKS - JLab E05-115 and E01-001 - Collaborations,

^{51}HKS - JLab E05-115 and E01-001 - Collaborations,

^{52}HKS - JLab E05-115 and E01-001 - Collaborations,

^{53}HKS - JLab E05-115 and E01-001 - Collaborations,

^{54}HKS - JLab E05-115 and E01-001 - Collaborations,

^{55}HKS - JLab E05-115 and E01-001 - Collaborations,

^{56}HKS - JLab E05-115 and E01-001 - Collaborations,

^{57}HKS - JLab E05-115 and E01-001 - Collaborations,

^{58}HKS - JLab E05-115 and E01-001 - Collaborations,

^{59}HKS - JLab E05-115 and E01-001 - Collaborations,

^{60}HKS - JLab E05-115 and E01-001 - Collaborations,

^{61}HKS - JLab E05-115 and E01-001 - Collaborations,

^{62}HKS - JLab E05-115 and E01-001 - Collaborations,

^{63}HKS - JLab E05-115 and E01-001 - Collaborations,

^{64}HKS - JLab E05-115 and E01-001 - Collaborations,

^{65}HKS - JLab E05-115 and E01-001 - Collaborations,

^{66}HKS - JLab E05-115 and E01-001 - Collaborations,

^{67}HKS - JLab E05-115 and E01-001 - Collaborations,

^{68}HKS - JLab E05-115 and E01-001 - Collaborations,

^{69}HKS - JLab E05-115 and E01-001 - Collaborations,

^{70}HKS - JLab E05-115 and E01-001 - Collaborations,

^{71}HKS - JLab E05-115 and E01-001 - Collaborations,

^{72}HKS - JLab E05-115 and E01-001 - Collaborations,

^{73}HKS - JLab E05-115 and E01-001 - Collaborations,

^{74}HKS - JLab E05-115 and E01-001 - Collaborations,

^{75}HKS - JLab E05-115 and E01-001 - Collaborations,

^{76}HKS - JLab E05-115 and E01-001 - Collaborations,

^{77}HKS - JLab E05-115 and E01-001 - Collaborations,

^{78}HKS - JLab E05-115 and E01-001 - Collaborations,

^{79}HKS - JLab E05-115 and E01-001 - Collaborations,

^{80}HKS - JLab E05-115 and E01-001 - Collaborations,

^{81}HKS - JLab E05-115 and E01-001 - Collaborations,

^{82}HKS - JLab E05-115 and E01-001 - Collaborations,

^{83}HKS - JLab E05-115 and E01-001 - Collaborations,

^{84}HKS - JLab E05-115 and E01-001 - Collaborations,

^{85}HKS - JLab E05-115 and E01-001 - Collaborations,

^{86}HKS - JLab E05-115 and E01-001 - Collaborations,

^{87}HKS - JLab E05-115 and E01-001 - Collaborations,

^{88}HKS - JLab E05-115 and E01-001 - Collaborations,

^{89}HKS - JLab E05-115 and E01-001 - Collaborations,

^{90}HKS - JLab E05-115 and E01-001 - Collaborations,

^{91}HKS - JLab E05-115 and E01-001 - Collaborations,

^{92}HKS - JLab E05-115 and E01-001 - Collaborations,

^{93}HKS - JLab E05-115 and E01-001 - Collaborations,

^{94}HKS - JLab E05-115 and E01-001 - Collaborations,

^{95}HKS - JLab E05-115 and E01-001 - Collaborations,

^{96}HKS - JLab E05-115 and E01-001 - Collaborations,

^{97}HKS - JLab E05-115 and E01-001 - Collaborations,

^{98}HKS - JLab E05-115 and E01-001 - Collaborations,

^{99}HKS - JLab E05-115 and E01-001 - Collaborations,

^{100}HKS - JLab E05-115 and E01-001 - Collaborations,

^{101}HKS - JLab E05-115 and E01-001 - Collaborations,

^{102}HKS - JLab E05-115 and E01-001 - Collaborations,

^{103}HKS - JLab E05-115 and E01-001 - Collaborations,

^{104}HKS - JLab E05-115 and E01-001 - Collaborations,

^{105}HKS - JLab E05-115 and E01-001 - Collaborations,

^{106}HKS - JLab E05-115 and E01-001 - Collaborations,

^{107}HKS - JLab E05-115 and E01-001 - Collaborations,

^{108}HKS - JLab E05-115 and E01-001 - Collaborations,

^{109}HKS - JLab E05-115 and E01-001 - Collaborations,

^{110}HKS - JLab E05-115 and E01-001 - Collaborations,

^{111}HKS - JLab E05-115 and E01-001 - Collaborations,

^{112}HKS - JLab E05-115 and E01-001 - Collaborations,

^{113}HKS - JLab E05-115 and E01-001 - Collaborations,

^{114}HKS - JLab E05-115 and E01-001 - Collaborations,

^{115}HKS - JLab E05-115 and E01-001 - Collaborations,

^{116}HKS - JLab E05-115 and E01-001 - Collaborations,

^{117}HKS - JLab E05-115 and E01-001 - Collaborations,

^{118}HKS - JLab E05-115 and E01-001 - Collaborations,

^{119}HKS - JLab E05-115 and E01-001 - Collaborations,

^{120}HKS - JLab E05-115 and E01-001 - Collaborations,

^{121}HKS - JLab E05-115 and E01-001 - Collaborations,

^{122}HKS - JLab E05-115 and E01-001 - Collaborations,

^{123}HKS - JLab E05-115 and E01-001 - Collaborations,

^{124}HKS - JLab E05-115 and E01-001 - Collaborations,

^{125}HKS - JLab E05-115 and E01-001 - Collaborations,

^{126}HKS - JLab E05-115 and E01-001 - Collaborations,

^{127}HKS - JLab E05-115 and E01-001 - Collaborations,

^{128}HKS - JLab E05-115 and E01-001 - Collaborations,

^{129}HKS - JLab E05-115 and E01-001 - Collaborations,

^{130}HKS - JLab E05-115 and E01-001 - Collaborations,

^{131}HKS - JLab E05-115 and E01-001 - Collaborations,

^{132}HKS - JLab E05-115 and E01-001 - Collaborations,

^{133}HKS - JLab E05-115 and E01-001 - Collaborations

**Category:**Nuclear Experiment

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

**Authors:**Z. D. Wu, B. Guo, Z. H. Li, Y. J. Li, J. Su, D. Y. Pang, S. Q. Yan, E. T. Li, X. X. Bai, X. C. Du, Q. W. Fan, L. Gan, J. J. He, S. J. Jin, L. Jing, L. Li, Z. C. Li, G. Lian, J. C. Liu, Y. P. Shen, Y. B. Wang, X. Q. Yu, S. Zeng, D. H. Zhang, L. Y. Zhang, W. J. Zhang, W. P. Liu

**Category:**Nuclear Experiment

All the 16F levels are unbound by proton emission. To date the four low-lying 16F levels below 1 MeV have been experimentally identified with well established spin-parity values and excitation energies with an accuracy of 4 - 6 keV. However, there are still considerable discrepancies for their level widths. Read More

Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. Read More

**Authors:**Chenfang Lin, Xiangqian Huang, Fen Ke, Chenhao Jin, Nai Tong, Xiuli Yin, Lin Gan, Xuefeng Guo, Ruguang Zhao, Weisheng Yang, Enge Wang, Zonghai Hu

We report preparation of large area quasi-1D monolayer graphene superlattices on a prototypical high index surface Cu(410)-O and characterization by Raman spectroscopy, Auger electron spectroscopy (AES), low energy electron diffraction (LEED), scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The periodically stepped substrate gives a 1D modulation to graphene, forming a superlattice of the same super-periodicity. Consequently the moire pattern is also quasi-1D, with a different periodicity. Read More

To schedule a large number of EVs with the presence of practical nonconvex charging constraints, a distributed and randomized algorithm is proposed in this paper. The algorithm assumes the availability of a coordinator which can communicate with all EVs. In each iteration of the algorithm, the coordinator receives tentative charging profiles from the EVs and computes a broadcast control signal. Read More

**Authors:**B. Guo, Z. H. Li, Y. J. Li, J. Su, D. Y. Pang, S. Q. Yan, Z. D. Wu, E. T. Li, X. X. Bai, X. C. Du, Q. W. Fan, L. Gan, J. J. He, S. J. Jin, L. Jing, L. Li, Z. C. Li, G. Lian, J. C. Liu, Y. P. Shen, Y. B. Wang, X. Q. Yu, S. Zeng, L. Y. Zhang, W. J. Zhang, W. P. Liu

**Category:**Nuclear Experiment

Fluorine is a key element for nucleosynthetic studies since it is extremely sensitive to the physical conditions within stars. The astrophysical site to produce fluorine is suggested to be asymptotic giant branch (AGB) stars. In these stars the 15N(n, g)16N reaction could affect the abundance of fluorine by competing with 15N(a, g)19F. Read More

The optimal power flow (OPF) problem determines power generation/demand that minimize a certain objective such as generation cost or power loss. It is nonconvex. We prove that, for radial networks, after shrinking its feasible set slightly, the global optimum of OPF can be recovered via a second-order cone programming (SOCP) relaxation under a condition that can be checked a priori. Read More

This paper deals with determination of turbulent convection velocities from particle image velocimetry (PIV). Turbulent convection velocities are of interest because they can be used to map temporal information into space. Convection velocity can be defined in several different ways. Read More

This paper considers the problem of pilot design for compressive multiple-input multiple-output (MIMO) channel estimation. In particular, we are interested in estimating the channels for multiple transmitters simultaneously when the pilot sequences are shorter than the combined channels. Existing works on this topic demonstrated that tools from compressed sensing theory can yield accurate multichannel estimation provided that each pilot sequence is randomly generated. Read More

**Authors:**The GlueX Collaboration, A. AlekSejevs, S. Barkanova, M. Dugger, B. Ritchie, I. Senderovich, E. Anassontzis, P. Ioannou, C. Kourkoumeli, G. Voulgaris, N. Jarvis, W. Levine, P. Mattione, W. McGinley, C. A. Meyer, R. Schumacher, M. Staib, P. Collins, F. Klein, D. Sober, D. Doughty, A. Barnes, R. Jones, J. McIntyre, F. Mokaya, B. Pratt, W. Boeglin, L. Guo, P. Khetarpal, E. Pooser, J. Reinhold, H. Al Ghoul, S. Capstick, V. Crede, P. Eugenio, A. Ostrovidov, N. Sparks, A. Tsaris, D. Ireland, K. Livingston, D. Bennett, J. Bennett, J. Frye, M. Lara, J. Leckey, R. Mitchell, K. Moriya, M. R. Shepherd, A. Szczepaniak, R. Miskimen, A. Mushkarenkov, B. Guegan, J. Hardin, J. Stevens, M. Williams, A. Ponosov, S. Somov, C. Salgado, P. Ambrozewicz, A. Gasparian, R. Pedroni, T. Black, L. Gan, S. Dobbs, K. K. Seth, A. Tomaradze, J. Dudek, F. Close, E. Swanson, S. Denisov, G. Huber, D. Kolybaba, S. Krueger, G. Lolos, Z. Papandreou, A. Semenov, I. Semenova, M. Tahani, W. Brooks, H. Hakobyan, S. Kuleshov, O. Soto, A. Toro, I. Vega, R. White, F. Barbosa, E. Chudakov, H. Egiyan, M. Ito, D. Lawrence, M. McCaughan, M. Pennington, L. Pentchev, Y. Qiang, E. S. Smith, A. Somov, S. Taylor, T. Whitlatch, E. Wolin, B. Zihlmann

**Category:**Nuclear Experiment

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in $\gamma p$ collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic $J^{PC}$, corresponding to $q\bar{q}$ states ($q=u,$ $d,$ or $s$) coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and $\pm1$, and both isoscalar members, $|s\bar{s}\ >$ and $|u\bar{u}\ > + |d\bar{d}\ >$, for each predicted hybrid combination of $J^{PC}$, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Read More

This paper proposes a verification-based decoding approach for reconstruction of a sparse signal with incremental sparse measurements. In its first step, the verification-based decoding algorithm is employed to reconstruct the signal with a fixed number of sparse measurements. Often, it may fail as the number of sparse measurements may be not enough, possibly due to an underestimate of the signal sparsity. Read More

We present a systematic light-cone QCD sum rule study of the exclusive rare radiative decay $\Lambda_b\rightarrow\Lambda\gamma$ and rare semileptonic decay $\Lambda_b\rightarrow\Lambda l^+l^-$ within the framework of the standard model. Although some LCSR studies on these rare processes can be found in different literatures, it is necessary to reanalyze them systematically for the reason that either the baryonic distribution amplitudes are improved or different interpolating currents for the $\Lambda_b$ baryon may lead to quite different results. In addition, the rare process $\Lambda_b\rightarrow\Lambda\gamma$ has not yet been analyzed by LCSR with the Ioffe-type current. Read More

**Authors:**X. Qiu, L. Tang, A. Margaryan, P. Achenbach, A. Ahmidouch, I. Albayrak, D. Androic, A. Asaturyan, R. Asaturyan, O. Ates, R. Badui, P. Baturin, W. Boeglin, J. Bono, E. Brash, P. Carter, C. Chen, X. Chen, A. Chiba, E. Christy, M. M. Dalton, S. Danagoulian, R. De Leo, D. Doi, M. Elaasar, R. Ent, H. Fenker, Y. Fujii, M. Furic, M. Gabrielyan, L. Gan, F. Garibaldi, D. Gaskell, A. Gasparian, T. Gogami, O. Hashimoto, T. Horn, B. Hu, E. V. Hungerford, M. Jones, H. Kanda, M. Kaneta, M. Kawai, D. Kawama, H. Khanal, M. Kohl, A. Liyanage, W. Luo, K. Maeda, P. Markowitz, T. Maruta, A. Matsumura, V. Maxwell, A. Mkrtchyan, H. Mkrtchyan, S. Nagao, S. N. Nakamura, A. Narayan, C. Neville, G. Niculescu, M. I. Niculescu, A. Nunez, Nuruzzaman, Y. Okayasu, T. Petkovic, J. Pochodzalla, J. Reinhold, V. M. Rodriguez, C. Samanta, B. Sawatzky, T. Seva, A. Shichijo, V. Tadevosyan, N. Taniya, K. Tsukada, M. Veilleux, W. Vulcan, F. R. Wesselmann, S. A. Wood, L. Ya, T. Yamamoto, Z. Ye, K. Yokota, L. Yuan, S. Zhamkochyan, L. Zhu

**Category:**Nuclear Experiment

The lifetime of a Lambda particle embedded in a nucleus (hypernucleus) decreases from that of free Lambda decay due to the opening of the Lambda N to NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. The present paper reports a direct measurement of the lifetime of medium-heavy hypernuclei produced with a photon-beam from Fe, Cu, Ag, and Bi targets. Read More

In this paper, a new class of circulant matrices built from deterministic sequences is proposed for convolution-based compressed sensing (CS). In contrast to random convolution, the coefficients of the underlying filter are given by the discrete Fourier transform of a deterministic sequence with good autocorrelation. Both uniform recovery and non-uniform recovery of sparse signals are investigated, based on the coherence parameter of the proposed sensing matrices. Read More

**Authors:**The GlueX Collaboration, M. Dugger, B. Ritchie, E. Anassontzis, P. Ioannou, C. Kourkoumeli, G. Voulgaris, N. Jarvis, W. Levine, P. Mattione, C. A. Meyer, R. Schumacher, P. Collins, F. Klein, D. Sober, D. Doughty, A. Barnes, R. Jones, J. McIntyre, F. Mokaya, B. Pratt, I. Senderovich, W. Boeglin, L. Guo, P. Khetarpal, E. Pooser, J. Reinhold, H. Al Ghoul, S. Capstick, V. Crede, P. Eugenio, A. Ostrovidov, N. Sparks, A. Tsaris, D. Ireland, K. Livingston, D. Bennett, J. Bennett, J. Frye, J. Leckey, R. Mitchell, K. Moriya, M. R. Shepherd, A. Szczepaniak, R. Miskimen, M. Williams, P. Ambrozewicz, A. Gasparian, R. Pedroni, T. Black, L. Gan, J. Dudek, F. Close, E. Swanson, S. Denisov, G. Huber, S. Katsaganis, D. Kolybaba, G. Lolos, Z. Papandreou, A. Semenov, I. Semenova, M. Tahani, W. Brooks, S. Kuleshov, A. Toro, F. Barbosa, E. Chudakov, H. Egiyan, M. Ito, D. Lawrence, L. Pentchev, Y. Qiang, E. S. Smith, A. Somov, S. Taylor, T. Whitlatch, E. Wolin, B. Zihlmann

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in gamma p collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic JPC, corresponding to q q-bar (q=u, d, or s) states coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and +-1, and both isoscalar members, |s s-bar> and |u u-bar> + |d d-bar>, for each predicted hybrid combination of JPC, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Read More

The optimal power flow (OPF) problem seeks to control power generation/demand to optimize certain objectives such as minimizing the generation cost or power loss in the network. It is becoming increasingly important for distribution networks, which are tree networks, due to the emergence of distributed generation and controllable loads. In this paper, we study the OPF problem in tree networks. Read More

**Authors:**S. N. Nakamura

^{1}, A. Matsumura

^{2}, Y. Okayasu

^{3}, T. Seva

^{4}, V. M. Rodriguez

^{5}, P. Baturin

^{6}, L. Yuan

^{7}, A. Acha

^{8}, A. Ahmidouch

^{9}, D. Androic

^{10}, A. Asaturyan

^{11}, R. Asaturyan

^{12}, O. K. Baker

^{13}, F. Benmokhtar

^{14}, P. Bosted

^{15}, R. Carlini

^{16}, C. Chen

^{17}, M. Christy

^{18}, L. Cole

^{19}, S. Danagoulian

^{20}, A. Daniel

^{21}, V. Dharmawardane

^{22}, K. Egiyan

^{23}, M. Elaasar

^{24}, R. Ent

^{25}, H. Fenker

^{26}, Y. Fujii

^{27}, M. Furic

^{28}, L. Gan

^{29}, D. Gaskell

^{30}, A. Gasparian

^{31}, E. F. Gibson

^{32}, T. Gogami

^{33}, P. Gueye

^{34}, Y. Han

^{35}, O. Hashimoto

^{36}, E. Hiyama

^{37}, D. Honda

^{38}, T. Horn

^{39}, B. Hu

^{40}, Ed V. Hungerford

^{41}, C. Jayalath

^{42}, M. Jones

^{43}, K. Johnston

^{44}, N. Kalantarians

^{45}, H. Kanda

^{46}, M. Kaneta

^{47}, F. Kato

^{48}, S. Kato

^{49}, D. Kawama

^{50}, C. Keppel

^{51}, K. J. Lan

^{52}, W. Luo

^{53}, D. Mack

^{54}, K. Maeda

^{55}, S. Malace

^{56}, A. Margaryan

^{57}, G. Marikyan

^{58}, P. Markowitz

^{59}, T. Maruta

^{60}, N. Maruyama

^{61}, T. Miyoshi

^{62}, A. Mkrtchyan

^{63}, H. Mkrtchyan

^{64}, S. Nagao

^{65}, T. Navasardyan

^{66}, G. Niculescu

^{67}, M. -I. Niculescu

^{68}, H. Nomura

^{69}, K. Nonaka

^{70}, A. Ohtani

^{71}, M. Oyamada

^{72}, N. Perez

^{73}, T. Petkovic

^{74}, S. Randeniya

^{75}, J. Reinhold

^{76}, J. Roche

^{77}, Y. Sato

^{78}, E. K. Segbefia

^{79}, N. Simicevic

^{80}, G. Smith

^{81}, Y. Song

^{82}, M. Sumihama

^{83}, V. Tadevosyan

^{84}, T. Takahashi

^{85}, L. Tang

^{86}, K. Tsukada

^{87}, V. Tvaskis

^{88}, W. Vulcan

^{89}, S. Wells

^{90}, S. A. Wood

^{91}, C. Yan

^{92}, S. Zhamkochyan

^{93}

**Affiliations:**

^{1}HKS,

^{2}HKS,

^{3}HKS,

^{4}HKS,

^{5}HKS,

^{6}HKS,

^{7}HKS,

^{8}HKS,

^{9}HKS,

^{10}HKS,

^{11}HKS,

^{12}HKS,

^{13}HKS,

^{14}HKS,

^{15}HKS,

^{16}HKS,

^{17}HKS,

^{18}HKS,

^{19}HKS,

^{20}HKS,

^{21}HKS,

^{22}HKS,

^{23}HKS,

^{24}HKS,

^{25}HKS,

^{26}HKS,

^{27}HKS,

^{28}HKS,

^{29}HKS,

^{30}HKS,

^{31}HKS,

^{32}HKS,

^{33}HKS,

^{34}HKS,

^{35}HKS,

^{36}HKS,

^{37}HKS,

^{38}HKS,

^{39}HKS,

^{40}HKS,

^{41}HKS,

^{42}HKS,

^{43}HKS,

^{44}HKS,

^{45}HKS,

^{46}HKS,

^{47}HKS,

^{48}HKS,

^{49}HKS,

^{50}HKS,

^{51}HKS,

^{52}HKS,

^{53}HKS,

^{54}HKS,

^{55}HKS,

^{56}HKS,

^{57}HKS,

^{58}HKS,

^{59}HKS,

^{60}HKS,

^{61}HKS,

^{62}HKS,

^{63}HKS,

^{64}HKS,

^{65}HKS,

^{66}HKS,

^{67}HKS,

^{68}HKS,

^{69}HKS,

^{70}HKS,

^{71}HKS,

^{72}HKS,

^{73}HKS,

^{74}HKS,

^{75}HKS,

^{76}HKS,

^{77}HKS,

^{78}HKS,

^{79}HKS,

^{80}HKS,

^{81}HKS,

^{82}HKS,

^{83}HKS,

^{84}HKS,

^{85}HKS,

^{86}HKS,

^{87}HKS,

^{88}HKS,

^{89}HKS,

^{90}HKS,

^{91}HKS,

^{92}HKS,

^{93}HKS

**Category:**Nuclear Experiment

An experiment with a newly developed high-resolution kaon spectrometer (HKS) and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab (JLab). The ground state of a neutron-rich hypernucleus, He 7 Lambda, was observed for the first time with the (e,e'K+) reaction with an energy resolution of ~0.6 MeV. Read More

Theoretically, it has been presumed from an effective Lagrangian calculation that there could exist two charged strangeonium-like molecular states $Z^{+}_{s1}$ and $Z^{+}_{s2}$, with $K\bar{K}^{*}$ and $K^{*}\bar{K}^{*}$ configurations respectively. In the framework of QCD sum rules, we predict that masses of $Z^{+}_{s1}$ ($K\bar{K}^{*}$) and $Z^{+}_{s2}$ ($K^{*}\bar{K}^{*}$) are $1.85\pm0. Read More

In the framework of the heavy quark effective theory, the leading order Isgur-Wise functions relevant to semileptonic decays of the orbitally $P$-wave excited $B_{s}$ meson states $B^{**}_{s}$, including the newly found narrow $B_{s1}(5830)$ and $B^{*}_{s2}(5840)$ states, into the ($D_{s1}(2536)$, $D^{*}_{s2}(2573)$) doublet are calculated from QCD sum rules. With these universal form factors, the decay rates and branching ratios are also estimated. Read More

This paper introduces a new framework of fast and efficient sensing matrices for practical compressive sensing, called Structurally Random Matrix (SRM). In the proposed framework, we pre-randomize a sensing signal by scrambling its samples or flipping its sample signs and then fast-transform the randomized samples and finally, subsample the transform coefficients as the final sensing measurements. SRM is highly relevant for large-scale, real-time compressive sensing applications as it has fast computation and supports block-based processing. Read More

We report novel graphene nanoribbon (GNR)/semiconductor nanowire (SNW) heterojunction light-emitting diodes (LEDs) for the first time. The GNR and SNW have a face-to-face contact structure, which has the merit of bigger active region. ZnO, CdS, and CdSe NWs were employed in our case. Read More

**Authors:**R. Asaturyan, R. Ent, H. Mkrtchyan, T. Navasardyan, V. Tadevosyan, G. S. Adams, A. Ahmidouch, T. Angelescu, J. Arrington, A. Asaturyan, O. K. Baker, N. Benmouna, C. Bertoncini, H. P. Blok, W. U. Boeglin, P. E. Bosted, H. Breuer, M. E. Christy, S. H. Connell, Y. Cui, M. M. Dalton, S. Danagoulian, D. Day, J. A. Dunne, D. Dutta, N. El Khayari, H. C. Fenker, V. V. Frolov, L. Gan, D. Gaskell, K. Hafidi, W. Hinton, R. J. Holt, T. Horn, G. M. Huber, E. Hungerford, X. Jiang, M. Jones, K. Joo, N. Kalantarians, J. J. Kelly, C. E. Keppel, V. Kubarovsky, Y. Li, Y. Liang, D. Mack, S. P. Malace, P. Markowitz, E. McGrath, P. McKee, D. G. Meekins, A. Mkrtchyan, B. Moziak, G. Niculescu, I. Niculescu, A. K. Opper, T. Ostapenko, P. E. Reimer, J. Reinhold, J. Roche, S. E. Rock, E. Schulte, E. Segbefia, C. Smith, G. R. Smith, P. Stoler, L. Tang, M. Ungaro, A. Uzzle, S. Vidakovic, A. Villano, W. F. Vulcan, M. Wang, G. Warren, F. R. Wesselmann, B. Wojtsekhowski, S. A. Wood, C. Xu, L. Yuan, X. Zheng

**Category:**Nuclear Experiment

A large set of cross sections for semi-inclusive electroproduction of charged pions ($\pi^\pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 < Q^2 < 4$ (GeV/c)$^2$, and cover a range in the Bjorken scaling variable 0.2 < x < 0. Read More

We present an analysis on the exclusive rare radiative decay modes Sigma_b->Sigma gamma and Xi_b->Xi gamma. The transition form factors which parameterize these processes are calculated using QCD light-cone sum rules. The decay widths we predict are Gamma(Sigma_b->Sigma gamma)=(7. Read More

Recently, the statistical restricted isometry property (RIP) has been formulated to analyze the performance of deterministic sampling matrices for compressed sensing. In this paper, we propose the usage of orthogonal symmetric Toeplitz matrices (OSTM) for compressed sensing and study their statistical RIP by taking advantage of Stein's method. In particular, we derive the statistical RIP performance bound in terms of the largest value of the sampling matrix and the sparsity level of the input signal. Read More

We develop a simple and scalable graphene patterning method using electron-beam or ultraviolet lithography followed by a lift-off process. This method, with the merits of: high pattern resolution and high alignment accuracy, free from additional etching or harsh process, universal to arbitrary substrates, compatible to Si microelectronic technology, can be easily applied to diverse graphene-based devices, especially in array-based applications, where large-scale graphene patterns are desired. We have applied this method to fabricate CdSe nanobelt (NB)/graphene Schottky junction solar cells, which have potential application in integrated nano-optoelectronic systems. Read More

**Authors:**I. Larin, D. McNulty, E. Clinton, P. Ambrozewicz, D. Lawrence, I. Nakagawa, Y. Prok, A. Teymurazyan, A. Ahmidouch, A. Asratyan, K. Baker, L. Benton, A. M. Bernstein, V. Burkert, P. Cole, P. Collins, D. Dale, S. Danagoulian, G. Davidenko, R. Demirchyan, A. Deur, A. Dolgolenko, G. Dzyubenko, R. Ent, A. Evdokimov, J. Feng, M. Gabrielyan, L. Gan, A. Gasparian, S. Gevorkyan, A. Glamazdin, V. Goryachev, V. Gyurjyan, K. Hardy, J. He, M. Ito, L. Jiang, D. Kashy, M. Khandaker, P. Kingsberry, A. Kolarkar, M. Konchatnyi, A. Korchin, W. Korsch, S. Kowalski, M. Kubantsev, V. Kubarovsky, X. Li, P. Martel, V. Matveev, B. Mecking, B. Milbrath, R. Minehart, R. Miskimen, V. Mochalov, S. Mtingwa, S. Overby, E. Pasyuk, M. Payen, R. Pedroni, B. Ritchie, T. E. Rodrigues, C. Salgado, A. Shahinyan, A. Sitnikov, D. Sober, S. Stepanyan, W. Stephens, J. Underwood, A. Vasiliev, V. Vishnyakov, M. Wood, S. Zhou

**Category:**Nuclear Experiment

High precision measurements of the differential cross sections for $\pi^0$ photoproduction at forward angles for two nuclei, $^{12}$C and $^{208}$Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the ${\pi^0 \to \gamma\gamma}$ decay width. Read More

We present an analysis of semileptonic decays of orbitally, $P$-wave excited $B_{s}$ meson states $B^{**}_{s}$, including the newly found narrow $B_{s1}(5830)$ and $B^{*}_{s2}(5840)$ states, into low lying $D_{s}$ mesons ($D_{s}(1968)$, $D^{*}_{s}(2112)$, $D_{sJ}(2317)$, $D_{sJ}(2460)$) within the framework of heavy quark effective theory. The relevant universal form factors are estimated using QCD sum rules at the leading-order of the heavy quark expansion. The decay widths are predicted and the branching ratios are estimated. Read More

In a recent article by Rodrigues et al. [1] eta photo-nuclear data taken by Browman et al. [2] in 1974 were refit as a means to extract the eta->gamma gamma decay width. Read More

Recent advances in the photon tagging facilities together with the novel, high resolution fast calorimetry made possible to perform photoproduction cross section measurements of pseudoscalar mesons on nuclei with a percent level accuracy. The extraction of the radiative decay widths, needed for testing the symmetry breaking effects in QCD, from these measurements at small angles is done by the Primakoff method. This method requires theoretical treatment of all processes participating in these reactions at the same percent level. Read More

We study the heavy quark effective theory prediction for semileptonic $B$ decays into an orbital excited $F$-wave charmed doublet, the ($2^{+}$, $3^{+}$) states ($D^{*'}_{2}$, $D_{3}$), at the leading order of heavy quark expansion. The corresponding universal form factor is estimated by using the QCD sum rule method. The decay rates we predict are $\Gamma_{B\to D^{*'}_{2}\ell\overline{\nu}}=1. Read More

**Authors:**A. N. Villano, P. Stoler, P. E. Bosted, S. H. Connell, M. M. Dalton, M. K. Jones, V. Kubarovsky, G. S Adams, A. Ahmidouch, J. Arrington, R. Asaturyan, O. K. Baker, H. Breuer, M. E. Christy, S. Danagoulian, D. Day, J. A. Dunne, D. Dutta, R. Ent, H. C. Fenker, V. V. Frolov, L. Gan, D. Gaskell, W. Hinton, R. J. Holt, T. Horn, G. M. Huber, K. Joo, N. Kalantarians, C. E. Keppel, Y. Li, A. Lung, D. Mack, S. Malace, P. Markowitz, D. G. Meekins, H. Mkrtchyan, J. Napolitano, G. Niculescu, I. Niculescu, D. H. Potterveld, Paul E. Reimer, J. Reinhold, J. Roche, S. E. Rock, G. R. Smith, S. Stepanyan, V. Tadevosyan, V. Tvaskis, M. Ungaro, A. Uzzle, S. Vidakovic, F. R. Wesselmann, B. Wojtsekhowski, S. A. Wood, L. Yuan, X. Zheng, H. Zhu

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 GeV/c$^2$)$^2$ in Jefferson Lab's Hall C. Read More

With the advent of new photon tagging facilities and novel experimental technologies it has become possible to perform photoproduction cross section measurements of pseudoscalar mesons on nuclei with a percent level accuracy. The extraction of the radiative decay widths from these measurements at forward angles is done by the Primakoff method, which requires theoretical treatment of all processes participating in these reactions at the same percent level. In this work we review the theoretical approach to meson photoproduction amplitudes in the electromagnetic and strong fields of nuclei at forward direction. Read More

We use QCD sum rules to estimate the leading-order universal form factors describing the semileptonic B decay into orbital excited $D$-wave charmed doublets, including the ($1^{-}$, $2^{-}$) states ($D_{1}^{*}$, $D'_{2}$) and the ($2^{-}$, $3^{-}$) states ($D_{2}$, $D_{3}^{*}$). The decay rates we predict are $\Gamma_{B\to D^{*}_{1}\ell\overline{\nu}}=\Gamma_{B\to D'_{2}\ell\overline{\nu}}=2.4\times10^{-18} {GeV}$, $\Gamma_{B\to D_{2}\ell\overline{\nu}}=6. Read More

**Authors:**K. Slifer

^{1}, O. A. Rondon

^{2}, A. Aghalaryan

^{3}, A. Ahmidouch

^{4}, R. Asaturyan

^{5}, F. Bloch

^{6}, W. Boeglin

^{7}, P. Bosted

^{8}, C. Carasco

^{9}, R. Carlini

^{10}, J. Cha

^{11}, J. P. Chen

^{12}, M. E. Christy

^{13}, L. Cole

^{14}, L. Coman

^{15}, D. Crabb

^{16}, S. Danagoulian

^{17}, D. Day

^{18}, J. Dunne

^{19}, M. Elaasar

^{20}, R. Ent

^{21}, H. Fenker

^{22}, E. Frlez

^{23}, D. Gaskell

^{24}, L. Gan

^{25}, J. Gomez

^{26}, B. Hu

^{27}, J. Jourdan

^{28}, M. K. Jones

^{29}, C. Keith

^{30}, C. E. Keppel

^{31}, M. Khandaker

^{32}, A. Klein

^{33}, L. Kramer

^{34}, Y. Liang

^{35}, J. Lichtenstadt

^{36}, R. Lindgren

^{37}, D. Mack

^{38}, P. McKee

^{39}, D. McNulty

^{40}, D. Meekins

^{41}, H. Mkrtchyan

^{42}, R. Nasseripour

^{43}, I. Niculescu

^{44}, K. Normand

^{45}, B. Norum

^{46}, D. Pocanic

^{47}, Y. Prok

^{48}, B. Raue

^{49}, J. Reinhold

^{50}, J. Roche

^{51}, D. Kiselev

^{52}, N. Savvinov, B. Sawatzky, M. Seely, I. Sick, C. Smith, G. Smith, S. Stepanyan, L. Tang, S. Tajima, G. Testa, W. Vulcan, K. Wang, G. Warren, F. R. Wesselmann, S. Wood, C. Yan, L. Yuan, J. Yun, M. Zeier, H. Zhu

**Affiliations:**

^{1}nee Rohe,

^{2}nee Rohe,

^{3}nee Rohe,

^{4}nee Rohe,

^{5}nee Rohe,

^{6}nee Rohe,

^{7}nee Rohe,

^{8}nee Rohe,

^{9}nee Rohe,

^{10}nee Rohe,

^{11}nee Rohe,

^{12}nee Rohe,

^{13}nee Rohe,

^{14}nee Rohe,

^{15}nee Rohe,

^{16}nee Rohe,

^{17}nee Rohe,

^{18}nee Rohe,

^{19}nee Rohe,

^{20}nee Rohe,

^{21}nee Rohe,

^{22}nee Rohe,

^{23}nee Rohe,

^{24}nee Rohe,

^{25}nee Rohe,

^{26}nee Rohe,

^{27}nee Rohe,

^{28}nee Rohe,

^{29}nee Rohe,

^{30}nee Rohe,

^{31}nee Rohe,

^{32}nee Rohe,

^{33}nee Rohe,

^{34}nee Rohe,

^{35}nee Rohe,

^{36}nee Rohe,

^{37}nee Rohe,

^{38}nee Rohe,

^{39}nee Rohe,

^{40}nee Rohe,

^{41}nee Rohe,

^{42}nee Rohe,

^{43}nee Rohe,

^{44}nee Rohe,

^{45}nee Rohe,

^{46}nee Rohe,

^{47}nee Rohe,

^{48}nee Rohe,

^{49}nee Rohe,

^{50}nee Rohe,

^{51}nee Rohe,

^{52}nee Rohe

**Category:**Nuclear Experiment

We have extracted QCD matrix elements from our data on double polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element \tilde{d_2}, which arises strictly from quark- gluon interactions, to be unambiguously non zero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. Read More