# L. E. Marcucci - Phys. Dept. Old Dominion University, Norfolk, VA, USA

## Contact Details

NameL. E. Marcucci |
||

AffiliationPhys. Dept. Old Dominion University, Norfolk, VA, USA |
||

CityNorfolk |
||

CountryUnited States |
||

## Pubs By Year |
||

## Pub CategoriesNuclear Theory (46) Nuclear Experiment (10) High Energy Physics - Experiment (3) Solar and Stellar Astrophysics (2) High Energy Physics - Phenomenology (1) Quantitative Biology - Subcellular Processes (1) Physics - Biological Physics (1) Quantitative Biology - Quantitative Methods (1) Cosmology and Nongalactic Astrophysics (1) |

## Publications Authored By L. E. Marcucci

p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. Read More

**Authors:**A. Camsonne, A. T. Katramatou, M. Olson, A. Acha, K. Allada, B. D. Anderson, J. Arrington, A. Baldwin, J. -P. Chen, S. Choi, E. Chudakov, E. Cisbani, B. Craver, P. Decowski, C. Dutta, E. Folts, S. Frullani, F. Garibaldi, R. Gilman, J. Gomez, B. Hahn, J. -O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, M. Iodice, X. Jiang, A. Kelleher, E. Khrosinkova, A. Kievsky, E. Kuchina, G. Kumbartzki, B. Lee, J. J. LeRose, R. A. Lindgren, G. Lott, H. Lu, L. E. Marcucci, D. J. Margaziotis, P. Markowitz, S. Marrone, D. Meekins, Z. -E. Meziani, R. Michaels, B. Moffit, B. Norum, G. G. Petratos, A. Puckett, X. Qian, O. Rondon, A. Saha, B. Sawatzky, J. Segal, M. Shabestari, A. Shahinyan, P. Solvignon, N. Sparveris, R. R. Subedi, R. Suleiman, V. Sulkosky, G. M. Urciuoli, M. Viviani, Y. Wang, B. B. Wojtsekhowski, X. Yan, H. Yao, W. -M. Zhang, X. Zheng, L. Zhu

**Category:**Nuclear Experiment

The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem. Read More

Almost 60 years ago Andrew Huxley with his seminal paper \cite{Huxley1957} laid the foundation of modern muscle modeling, linking chemical events to mechanical performance. He described mechanics and energetics of muscle contraction through the cyclical attachment and detachment of myosin motors to the actin filament with ad hoc assumptions on the dependence of the rate constants on the strain of the myosin motors. That relatively simple hypothesis is still present in recent models, even though with several modifications to adapt the model to the different experimental constraints which became subsequently available. Read More

We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M.\ Piarulli {\it et al.}, Phys. Read More

**Category:**Nuclear Theory

The muon capture on 3H leading to muonic neutrino and three neutrons in the final state is studied under full inclusion of final state interactions. Predictions for the three-body break-up of 3H are calculated with the AV18 potential, augmented by the Urbana IX three-nucleon force. Our results are based on the single nucleon weak current operator comprising the dominant relativistic corrections. Read More

We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium $\beta$-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory ($\chi$ EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either $\chi$ EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. Read More

Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Read More

The astrophysical $S$-factor for the radiative capture $d(p,\gamma)^3$He in the energy-range of interest for Big Bang Nucleosynthesis (BBN) is calculated using an {\it ab-initio} approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions - the Argonne $v_{18}$ and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. Read More

Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below $Q \lesssim 5$ fm$^{-1}$ there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at $Q \gtrsim 5$ fm$^{-1}$, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. Read More

The p(p,e^+ \nu_e)^2H reaction rate is an essential ingredient for theoretical computations of stellar models. In the past several values of the corresponding S-factor have been made available by different authors. Prompted by a recent evaluation of S(E), we analysed the effect of the adoption of different proton-proton reaction rates on stellar models, focusing, in particular, on the age of mid and old stellar clusters (1-12 Gyr) and on standard solar model predictions. Read More

We calculate the nuclear and neutron matter equations of state from microscopic nuclear forces at different orders in chiral effective field theory and with varying momentum-space cutoff scales. We focus attention on how the order-by-order convergence depends on the choice of resolution scale and the implications for theoretical uncertainty estimates on the isospin asymmetry energy. Specifically we study the equations of state using consistent NLO and N2LO (next-to-next-to-leading order) chiral potentials where the low-energy constants cD and cE associated with contact vertices in the N2LO chiral three-nucleon force are fitted to reproduce the binding energies of 3H and 3He as well as the beta-decay lifetime of 3H. Read More

We study the capture rate in the doublet hyperfine initial state for the muon capture reaction $\mu^- + \,^2{\rm H} \rightarrow \nu_\mu + n + n$ ($\Gamma^D$) and the total capture rate for the reaction $ \mu^- + \,^3{\rm He} \rightarrow \nu_\mu + \,^3{\rm H}$ ($\Gamma_0$). We investigate whether $\Gamma^D$ and $\Gamma_0$ could be sensitive to the $nn$ $S$-wave scattering length ($a_{nn}$). To this aim, we consider nuclear potentials and weak currents derived within $\chi$EFT. Read More

**Authors:**The Jefferson Lab Hall A Collaboration, M. Mihovilovič, G. Jin, E. Long, Y. -W. Zhang, K. Allada, B. Anderson, J. R. M. Annand, T. Averett, W. Boeglin, P. Bradshaw, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. P. Chen, E. Chudakov, R. De Leo, X. Deng, A. Deltuva, A. Deur, C. Dutta, L. El Fassi, D. Flay, S. Frullani, F. Garibaldi, H. Gao, S. Gilad, R. Gilman, O. Glamazdin, J. Golak, S. Golge, J. Gomez, O. Hansen, D. W. Higinbotham, T. Holmstrom, J. Huang, H. Ibrahim, C. W. de Jager, E. Jensen, X. Jiang, M. Jones, H. Kang, J. Katich, H. P. Khanal, A. Kievsky, P. King, W. Korsch, J. LeRose, R. Lindgren, H. -J. Lu, W. Luo, L. E. Marcucci, P. Markowitz, M. Meziane, R. Michaels, B. Moffit, P. Monaghan, N. Muangma, S. Nanda, B. E. Norum, K. Pan, D. Parno, E. Piasetzky, M. Posik, V. Punjabi, A. J. R. Puckett, X. Qian, Y. Qiang, X. Qui, S. Riordan, A. Saha, P. U. Sauer, B. Sawatzky, R. Schiavilla, M. Shabestari, A. Shahinyan, B. Schoenrock, S. Širca, R. Skibiński, J. St. John, R. Subedi, V. Sulkosky, W. A. Tobias, W. Tireman, G. M. Urciuoli, M. Viviani, D. Wang, K. Wang, Y. Wang, J. Watson, B. Wojtsekhowski, H. Witała, Z. Ye, X. Zhan, Y. Zhang, X. Zheng, B. Zhao, L. Zhu

**Category:**Nuclear Experiment

We present a precise measurement of double-polarization asymmetries in the $^3\vec{\mathrm{He}}(\vec{\mathrm{e}},\mathrm{e}'\mathrm{d})$ reaction. This particular process is a uniquely sensitive probe of hadron dynamics in $^3\mathrm{He}$ and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at $Q^2 = 0. Read More

The mu + 2H -> nu + n + n, mu + 3He -> nu + 3H, mu + 3He -> nu + n + d and mu + 3He -> nu + n + n + p capture reactions are studied with various realistic potentials under full inclusion of final state interactions. Our results for the two- and three-body break-up of 3He are calculated with a variety of nucleon-nucleon potentials, among which is the AV18 potential, augmented by the Urbana~IX three-nucleon potential. Most of our results are based on the single nucleon weak current operator. Read More

We reconsider the derivation of the nucleon-nucleon parity-violating (PV) potential within a chiral effective field theory framework. We construct the potential up to next-to-next-to-leading order by including one-pion-exchange, two-pion-exchange, contact, and 1/M (M being the nucleon mass) terms, and use dimensional regularization to renormalize the pion-loop corrections. A detailed analysis of the number of independent low-energy constants (LEC's) entering the potential is carried out. Read More

We compute the energy per particle of infinite symmetric nuclear matter from chiral N3LO (next-to-next-to-next-to-leading order) two-body potentials plus N2LO three-body forces. The low-energy constants of the chiral three-nucleon force that cannot be constrained by two-body observables are fitted to reproduce the triton binding energy and the 3H-3He Gamow-Teller transition matrix element. In this way, the saturation properties of nuclear matter are reproduced in a parameter-free approach. Read More

We calculate perturbatively the energy per nucleon in infinite nuclear matter with a chiral N3LO (next-to-next-to-next-to-leading order) two-body potential plus a N2LO three-body force (3BF). The 3BF low-energy constants which cannot be constrained by two-body observables are chosen such as to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. This enables to study the nuclear matter equation of state in a parameter-free approach. Read More

We review the results of the most recent calculations for the electromagnetic structure of light nuclei, the weak muon capture on deuteron and 3He and the weak proton-proton capture reaction at energies of astrophysical interest, performed within the chiral effective field theory framework. Read More

**Authors:**A. Camsonne, A. T. Katramatou, M. Olson, N. Sparveris, A. Acha, K. Allada, B. D. Anderson, J. Arrington, A. Baldwin, J. -P. Chen, S. Choi, E. Chudakov, E. Cisbani, B. Craver, P. Decowski, C. Dutta, E. Folts, S. Frullani, F. Garibaldi, R. Gilman, J. Gomez, B. Hahn, J. -O. Hansen, D. Higinbotham, T. Holmstrom, J. Huang, M. Iodice, X. Jiang, A. Kelleher, E. Khrosinkova, A. Kievsky, E. Kuchina, G. Kumbartzki, B. Lee, J. J. LeRose, R. A. Lindgren, G. Lott, H. Lu, L. E. Marcucci, D. J. Margaziotis, P. Markowitz, S. Marrone, D. Meekins, Z. -E. Meziani, R. Michaels, B. Moffit, B. Norum, G. G. Petratos, A. Puckett, X. Qian, O. Rondon, A. Saha, B. Sawatzky, J. Segal, M. Shabestari, A. Shahinyan, P. Solvignon, R. R. Subedi, R. Suleiman, V. Sulkosky, G. M. Urciuoli, M. Viviani, Y. Wang, B. B. Wojtsekhowski, X. Yan, H. Yao, W. -M. Zhang, X. Zheng, L. Zhu

The charge form factor of $^$4He has been extracted in the range 29 fm$^{-2}$ $\le Q^2 \le 77$ fm$^{-2}$ from elastic electron scattering, detecting $^4$He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the $Q^2$ range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting. Read More

We present a detailed study of the effect of different three-nucleon interaction models in p-3He elastic scattering at low energies. In particular, two models have been considered: one derived from effective field theory at next-to-next-to-leading order and one derived from a more phenomenological point of view -- the so-called Illinois model. The four-nucleon scattering observables are calculated using the Kohn variational principle and the hyperspherical harmonics technique and the results are compared with available experimental data. Read More

The astrophysical S-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium beta decay. Read More

The objectives of the present work are twofold. The first is to address and resolve some of the differences present in independent, chiral-effective-field-theory (\chiEFT) derivations up to one loop, recently appeared in the literature, of the nuclear charge and current operators. The second objective is to provide a complete set of \chiEFT predictions for the structure functions and tensor polarization of the deuteron, for the charge and magnetic form factors of 3He and 3H, and for the charge and magnetic radii of these few-nucleon systems. Read More

The effect of the inclusion of different models of three nucleon (3N) forces in p-3He elastic scattering at low energies is studied. Two models have been considered: one derived from effective field theory at next-to-next-to-leading order and one derived from a more phenomenological point of view -- the so-called Illinois model. The four nucleon scattering observables are calculated using the Kohn variational principle and the hyperspherical harmonic technique and the results are compared with available experimental data. Read More

Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient knowledge on the role of two-body weak currents. Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV energies. Read More

The present status of theoretical and experimental studies of muon capture reactions on light nuclei is reviewed. In particular, the recent results for the two reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are presented, and the unresolved discrepancies among different measurements and calculations, open problems, and future developments are discussed. Read More

The muon-capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c_D and c_E, present in the three-nucleon potential and (c_D) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. Read More

Bound-state-like wave functions are used to determine the scattering matrix corresponding to low energy $N-d$ and $p-^3$He collisions. To this end, the coupled channel form of the integral relations derived from the Kohn variational principle is used. The construction of degenerate bound-state-like wave functions belonging to the continuum spectrum of the Hamiltonian is discussed. Read More

The n-3H and p-3He elastic phase-shifts below the trinucleon disintegration thresholds are calculated by solving the 4-nucleon problem with three different realistic nucleon-nucleon interactions (the I-N3LO model by Entem and Machleidt, the Argonne v18 potential model, and a low-k model derived from the CD-Bonn potential). Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been used and their respective results are compared. For both n-3H and p-3He we observe a rather good agreement between the three different theoretical methods. Read More

This work investigates the muon capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H and the contribution to their total capture rates arising from the axial two-body currents obtained imposing the partially-conserved-axial-current (PCAC) hypothesis. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v_{18} two-nucleon potential, in combination with the Urbana IX three-nucleon potential in the case of A=3. The weak current consists of vector and axial components derived in chiral effective field theory. Read More

**Category:**Nuclear Theory

The muon capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are studied with conventional or chiral realistic potentials and consistent weak currents. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v18 or chiral N3LO two-nucleon potential, in combination with, respectively, the Urbana IX or chiral N2LO three-nucleon potential in the case of A=3. The weak current consists of polar- and axial-vector components. Read More

We report on a study of the $nd$ and $n\,^3$He radiative captures at thermal neutron energies, using wave functions obtained from either chiral or conventional two- and three-nucleon realistic potentials with the hyperspherical harmonics method, and electromagnetic currents derived in chiral effective field theory up to one loop. The predicted $nd$ and $n\,^3$He cross sections are in good agreement with data, but exhibit a significant dependence on the input Hamiltonian. A comparison is also made between these and new results for the $nd$ and $n\,^3$He cross sections obtained in the conventional framework for both potentials and currents. Read More

The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. Read More

**Authors:**E. G. Adelberger, A. B. Balantekin, D. Bemmerer, C. A. Bertulani, J. -W. Chen, H. Costantini, M. Couder, R. Cyburt, B. Davids, S. J. Freedman, M. Gai, A. Garcia, D. Gazit, L. Gialanella, U. Greife, M. Hass, K. Heeger, W. C. Haxton, G. Imbriani, T. Itahashi, A. Junghans, K. Kubodera, K. Langanke, D. Leitner, M. Leitner, L. E. Marcucci, T. Motobayashi, A. Mukhamedzhanov, Kenneth M. Nollett, F. M. Nunes, T. -S. Park, P. D. Parker, P. Prati, M. J. Ramsey-Musolf, R. G. Hamish Robertson, R. Schiavilla, E. C. Simpson, K. A. Snover, C. Spitaleri, F. Strieder, K. Suemmerer, H. -P. Trautvetter, R. E. Tribble, S. Typel, E. Uberseder, P. Vetter, M. Wiescher, L. Winslow

We summarize and critically evaluate the available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. We also discuss opportunities for further increasing the precision of key rates, including new facilities, new experimental techniques, and improvements in theory. Read More

The Kohn variational principle and the hyperspherical harmonic technique are applied to study p-3He elastic scattering at low energies. Preliminary results obtained using several interaction models are reported. The calculations are compared to a recent phase shift analysis performed at the Triangle University Nuclear Laboratory and to the available experimental data. Read More

Using modern nucleon-nucleon interactions in the description of the $A=3,4$ nuclei, it is not possible to reproduce both the three- and four-nucleon binding energies simultaneously. This is one manifestation of the necessity of including a three-nucleon force in the nuclear Hamiltonian. In this paper we will perform a comparative study of some, widely used, three-nucleon force models. Read More

The application of the hyperspherical harmonic approach to the case of the N-d scattering problem below deuteron breakup threshold is described. The nuclear Hamiltonian includes two- and three-nucleon interactions, in particular the Argonne v_{18}, the N3LO-Idaho, and the V_{low k} two-nucleon, and the Urbana IX and N2LO three-nucleon interactions. Some of these models are local, some are non-local. Read More

**Category:**Nuclear Theory

The Kohn variational principle and the hyperspherical harmonics technique are applied to study n-3H elastic scattering at low energies. In this contribution the first results obtained using a non-local realistic interaction derived from the chiral perturbation theory are reported. They are found to be in good agreement with those obtained solving the Faddeev-Yakubovsky equations. Read More

Green's function Monte Carlo calculations of magnetic moments and M1 transitions including two-body meson-exchange current (MEC) contributions are reported for A<=7 nuclei. The realistic Argonne v18 two-nucleon and Illinois-2 three-nucleon potentials are used to generate the nuclear wave functions. The two-body meson-exchange operators are constructed to satisfy the continuity equation with the Argonne v18 potential. Read More

The hyperspherical harmonic (HH) method has been widely applied in recent times to the study of the bound states, using the Rayleigh-Ritz variational principle, and of low-energy scattering processes, using the Kohn variational principle, of A=3 and 4 nuclear systems. When the wave function of the system is expanded over a sufficiently large set of HH basis functions, containing or not correlation factors, quite accurate results can be obtained for the observables of interest. In this paper, the main aspects of the method are discussed together with its application to the A=3 and 4 nuclear bound and zero-energy scattering states. Read More

The neutron spin rotation induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in \vec{n}-d scattering at zero energy. Results are obtained corresponding to the Argonne v_{18} two-nucleon and Urbana-IX three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. We find that this observable is dominated by the contribution of the long-range part of the PV potential associated with pion exchange. Read More

The structure of A=3 low-energy scattering states is described using the hyperspherical harmonics method with realistic Hamiltonian models, consisting of two- and three-nucleon interactions. Both coordinate and momentum space two-nucleon potential models are considered. Read More

In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4He(\vec e,e')4He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4He are derived from nuclear interactions, including explicit ISB terms. Read More

**Affiliations:**

^{1}INFN, Sezione di Pisa, Pisa, Italy,

^{2}INFN, Sezione di Pisa, Pisa, Italy,

^{3}INFN, Sezione di Pisa, Pisa, Italy,

^{4}INFN, Sezione di Pisa, Pisa, Italy,

^{5}Department of Physics ``E. Fermi'', University of Pisa, Pisa, Italy

**Category:**Nuclear Theory

The application of the hyperspherical harmonic approach to the case of non-local two-body potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The binding energies and other ground state properties of A=3 and 4 nuclei are calculated using the CD Bonn 2000 and N3LO two-body potentials. Read More

The $^3$He$(e,e^\prime p)$$d$ reaction is studied using an accurate three-nucleon bound state wave function, a model for the electromagnetic current operator including one- and two-body terms, and the Glauber approximation for the treatment of final state interactions. In contrast to earlier studies, the profile operator in the Glauber expansion is derived from a nucleon-nucleon scattering amplitude, which retains its full spin and isospin dependence and is consistent with phase-shift analyses of two-nucleon scattering data. The amplitude is boosted from the center-of-mass frame, where parameterizations for it are available, to the frame where rescattering occurs. Read More

Different models for conserved two- and three-body electromagnetic currents are constructed from two- and three-nucleon interactions, using either meson-exchange mechanisms or minimal substitution in the momentum dependence of these interactions. The connection between these two different schemes is elucidated. A number of low-energy electronuclear observables, including (i) $np$ radiative capture at thermal neutron energies and deuteron photodisintegration at low energies, (ii) $nd$ and $pd$ radiative capture reactions, and (iii) isoscalar and isovector magnetic form factors of $^3$H and $^3$He, are calculated in order to make a comparative study of these models for the current operator. Read More

Polarization observables in the $^4$He$(\vec{e},e^\prime\vec{p})$$^3$H reaction are calculated using accurate three- and four-nucleon bound-state wave functions, a realistic model for the nuclear electromagnetic current operator, and a treatment of final-state-interactions with an optical potential. In contrast to earlier studies, no significant discrepancies are found between theory and experiment both for the ratio of transverse to longitudinal polarization transfers and for the induced polarization, when free-nucleon electromagnetic form factors are used in the current operator. The present results challenge the current interpretation of the experimental data in terms of medium-modified form factors. Read More

Recent advances in the study of electrodisintegration of 3He are presented and discussed. The pair-correlated hyperspherical harmonics method is used to calculate the initial and final state wave functions, with a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana IX three-nucleon interactions. The model for the nuclear current and charge operators retains one- and many-body contributions. Read More

Recent advances in the study of pd radiative capture in a wide range of center-of-mass energy below and above deuteron breakup threshold are presented and discussed. Read More

We summarize recent ab initio studies of low-energy electroweak reactions of astrophysical interest, relevant for both big bang nucleosynthesis and solar neutrino production. The calculational methods include direct integration for np radiative and pp weak capture, correlated hyperspherical harmonics for reactions of A=3,4 nuclei, and variational Monte Carlo for A=6,7 nuclei. Realistic nucleon-nucleon and three-nucleon interactions and consistent current operators are used as input. Read More

The electromagnetic potential consisting in the Coulomb plus the magnetic moment interactions between two nucleons is studied in nucleon-deuteron scattering. For states in which the relative N-d angular momentum L has low values the three--nucleon problem has been solved using the correlated hyperspherical harmonic expansion basis. For states in which the angular momentum L has large values, explicit formulae for the nucleon-deuteron magnetic moment interaction are derived and used to calculate the corresponding T-matrices in Born approximation. Read More