# L. D. Hu - LJLL

## Contact Details

NameL. D. Hu |
||

AffiliationLJLL |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesPhysics - Mesoscopic Systems and Quantum Hall Effect (10) Quantum Physics (7) Physics - Optics (6) Physics - Instrumentation and Detectors (5) Physics - Superconductivity (4) Mathematics - Optimization and Control (4) Nuclear Experiment (4) High Energy Physics - Experiment (3) Statistics - Machine Learning (3) Statistics - Computation (2) Physics - Data Analysis; Statistics and Probability (2) Mathematical Physics (2) Computer Science - Information Theory (2) Mathematics - Information Theory (2) Computer Science - Learning (2) Mathematics - Mathematical Physics (2) Computer Science - Computer Vision and Pattern Recognition (2) High Energy Astrophysical Phenomena (2) Physics - Medical Physics (1) Statistics - Methodology (1) Computer Science - Mathematical Software (1) Mathematics - Numerical Analysis (1) Mathematics - Combinatorics (1) High Energy Physics - Theory (1) Instrumentation and Methods for Astrophysics (1) Physics - Materials Science (1) Physics - General Physics (1) Computer Science - Graphics (1) Computer Science - Data Structures and Algorithms (1) Computer Science - Artificial Intelligence (1) Mathematics - Statistics (1) Statistics - Theory (1) Computer Science - Networking and Internet Architecture (1) Statistics - Applications (1) Physics - Classical Physics (1) Physics - Strongly Correlated Electrons (1) |

## Publications Authored By L. D. Hu

In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). Read More

A fundamental problem regarding the Dirac quantization of a free particle on an $N-1$ curved hypersurface embedded in $N$ flat space is the impossibility to give the same form of the curvature-induced quantum potential, the geometric potential as commonly called, as that given by the Schr\"{o}dinger equation method where the particle moves in a region confined by a thin-layer sandwiching the surface. We resolve this problem by means of previously proposed scheme that hypothesizes a simultaneoue quantization of positions, momenta, and Hamiltonian, among which the operator-odering-free section is identified and is then found sufficient to lead to the expected form of geometric potential. Read More

Spectroscopy is a crucial laboratory technique for understanding quantum systems through their interactions with electromagnetic radiation. Particularly, spectroscopy is capable of revealing the physical structure of molecules, leading to the development of the maser - the forerunner of the laser. However, real-world applications of molecular spectroscopy are mostly confined to equilibrium states, due to computational and technological constraints; a potential breakthrough can be achieved by utilizing the emerging technology of quantum simulation. Read More

We propose and experimentally demonstrate a new method to generate arbitrary Fock-state superpositions in a superconducting quantum circuit, where a qubit is dispersively coupled to a microwave cavity mode without the need of fine-frequency tuning. Here the qubit is used to conditionally modulate the probability amplitudes of the Fock state components of a coherent state to those of the desired superposition state, instead of pumping photons one by one into the cavity as in previous schemes. Our method does not require the adjustment of the qubit frequency during the cavity state preparation, and is more robust to noise and accumulation of experimental errors compared to previous ones. Read More

In recent years, the capacitated center problems have attracted a lot of research interest. Given a set of vertices $V$, we want to find a subset of vertices $S$, called centers, such that the maximum cluster radius is minimized. Moreover, each center in $S$ should satisfy some capacity constraint, which could be an upper or lower bound on the number of vertices it can serve. Read More

A layer-pressure topological phase diagram is obtained for few-layer phosphorene under increasing hydrostatic pressures by first-principles electronic structure calculations. We show that pressure can effectively manipulates the band structures of few-layer phosphorene -- a pressure of less than 4.2 GPa can drive the quasi-two-dimensional (2D) phosphorene (of 4 layers or thicker) from normal insulators to nontrivial topological Dirac semimetals (TDSMs). Read More

In this work we study the quantitative relation between the recursive teaching dimension (RTD) and the VC dimension (VCD) of concept classes of finite sizes. The RTD of a concept class $\mathcal C \subseteq \{0, 1\}^n$, introduced by Zilles et al. (2011), is a combinatorial complexity measure characterized by the worst-case number of examples necessary to identify a concept in $\mathcal C$ according to the recursive teaching model. Read More

We study interaction effect of quantum spin Hall state in InAs/GaSb quantum wells under an in-plane magnetic field by using the self-consistent mean field theory. We construct a phase diagram as a function of intra-layer and inter-layer interactions, and identify two novel phases, a charge/spin density wave phase and an exciton condensate phase. The charge/spin density wave phase is topologically non-trivial with helical edge transport at the boundary, while the exciton condensate phase is topologically trivial. Read More

Combination of a construction of unambiguous quantum conditions out of the conventional one and a simultaneous quantization of the positions, momenta, angular momenta and Hamiltonian leads to the geometric potential given by the so-called thin-lay quantization. Read More

**Affiliations:**

^{1}LJLL,

^{2}IMB,

^{3}IMB

**Category:**Mathematics - Optimization and Control

This paper is devoted to a simple and new proof on the optimal finite control time for general linear coupled hyperbolic system by using boundary feedback on one side. The feedback control law is designed by first using a Volterra transformation of the second kind and then using an invertible Fredholm transformation. Both existence and invertibility of the transformations are easily obtained. Read More

We present a data-driven inference method that can synthesize a photorealistic texture map of a complete 3D face model given a partial 2D view of a person in the wild. After an initial estimation of shape and low-frequency albedo, we compute a high-frequency partial texture map, without the shading component, of the visible face area. To extract the fine appearance details from this incomplete input, we introduce a multi-scale detail analysis technique based on mid-layer feature correlations extracted from a deep convolutional neural network. Read More

Nonparametric regression models with locally stationary covariates have received increasing interest in recent years. As a nice relief of "curse of dimensionality" induced by large dimension of covariates, additive regression model is commonly used. However, in locally stationary context, to catch the dynamic nature of regression function, we adopt a flexible varying-coefficient additive model where the regression function has the form $\alpha_{0}\left(u\right)+\sum_{k=1}^{p}\alpha_{k}\left(u\right)\beta_{k}\left(x_{k}\right). Read More

Characterizing electromagnetic wave propagation in nonlinear and inhomogeneous media is of great interest from both theoretical and practical perspectives, even though it is extremely complicated. In fact, it is still an unresolved issue to find the exact solutions to the nonlinear waves in the orthogonal curvilinear coordinates. In this paper, we present an analytic method to handle the problem of electromagnetic waves propagation in arbitrarily nonlinear and particularly inhomogeneous media without dispersion. Read More

A common optical potential for $^4$He+$^{12}$C at intermediate bombarding energies, which is essential in analyzing exotic nuclei with $^4$He clusters, was obtained based on the S\~{a}o Paulo potential (SPP). Among systematic optical potentials for $^4$He+$^{12}$C, this potential has the merit of using a fixed imaginary part of Woods-Saxon form. By optical-model calculations, this potential reproduced the experimental elastic scattering angular distributions of $^4$He+$^{12}$C well within the energy range of 26\,$A$--60\,$A$ MeV. Read More

We consider the problem of performing matrix completion with side information on row-by-row and column-by-column similarities. We build upon recent proposals for matrix estimation with smoothness constraints with respect to row and column graphs. We present a novel iterative procedure for directly minimizing an information criterion in order to select an appropriate amount row and column smoothing, namely perform model selection. Read More

**Category:**Physics - Superconductivity

Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope (STM) experiment$^{1}$ has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core, which may be attributed to the spin selective Andreev reflection, a novel property of the MZMs theoretically predicted in 1-dimensional nanowire$^{2}$. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. Read More

It is pointed out that the current form of extrinsic equation of motion for a particle constrained to remain on a hypersurface is in fact a half-finished version for it is established without regard to the fact that the particle can never depart from the geodesics on the surface. Once the fact be taken into consideration, the equation takes that same form as that for centripetal force law, provided that the symbols are re-interpreted so that the law is applicable for higher dimensions. The controversial issue of constructing operator forms of these equations is addressed, and our studies show the quantization of constrained system based on the extrinsic equation of motion is favorable. Read More

China Spallation Neutron Source (CSNS) is the first high-performance pulsed neutron source in China, which will meet the increasing fundamental research and technique applications demands domestically and overseas. A new distributed data processing and analysis environment has been developed, which has generic functionalities for neutron scattering experiments. The environment consists of three parts, an object-oriented data processing framework adopting a data centered architecture, a communication and data caching system based on the C/S paradigm, and data analysis and visualization software providing the 2D/3D experimental data display. Read More

Person re-identification (re-id) consists of associating individual across camera network, which is valuable for intelligent video surveillance and has drawn wide attention. Although person re-identification research is making progress, it still faces some challenges such as varying poses, illumination and viewpoints. For feature representation in re-identification, existing works usually use low-level descriptors which do not take full advantage of body structure information, resulting in low representation ability. Read More

Plasmonic chirality exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response. Previous reports on plasmonic chirality explanations are mainly based on phase retardation and coupling. We propose a quantitative model similar to the chiral molecules for explaining the mechanism of the intrinsic plasmonic chirality quantitatively based on the interplay and mixing of electric and magnetic dipole modes, which forms a mixed electric and magnetic polarizability. Read More

Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells\cite{du2013}$^,$\cite{xu2014}, we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-Butikker formalism. Our theory predicts a robustness of the conductance quantization against the magnetic field up to a very high field of 20 tesla. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Read More

The quantum spin Hall effect has been predicted theoretically and observed experimentally in InAs/GaSb quantum wells as a result of inverted band structures, for which electron bands in InAs layers are below heavy hole bands in GaSb layers in energy. The hybridization between electron bands and heavy hole bands leads to a hybridization gap away from k=0. A recent puzzling observation in experiments is that when the system is tuned to more inverted regime by a gate voltage (a larger inverted gap at k=0), the hybridization gap decreases. Read More

Majorana fermion (MF) whose antiparticle is itself has been predicted in condensed matter systems. Signatures of the MFs have been reported as zero energy modes in various systems. More definitive evidences are highly desired to verify the existence of the MF. Read More

Social Delay Tolerant Networks (SDTNs) are a special kind of Delay Tolerant Network (DTN) that consists of a number of mobile devices with social characteristics. The current research achievements on routing algorithms tend to separately evaluate the available profit for each prospective relay node and cannot achieve the global optimal performance in an overall perspective. In this paper, we propose a Movement Pattern-Aware optimal Routing (MPAR) for SDTNs, by choosing the optimal relay node(s) set for each message, which eventually based on running a search algorithm on a hyper-cube solution space. Read More

2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity \r{ho}(T), specific heat CP(T) and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. Read More

The $^{192}$Ir sources are widely used for high dose rate (HDR) brachytherapy treatments. The aim of this study is to simulate $^{192}$Ir MicroSelectron v2 HDR brachytherapy source and calculate the air kerma strength, dose rate constant, radial dose function and anisotropy function established in the updated AAPM Task Group 43 protocol. The EGSnrc Monte Carlo (MC) code package is used to calculate these dosimetric parameters, including dose contribution from secondary electron source and also contribution of bremsstrahlung photons to air kerma strength. Read More

We theoretically introduce a new kind of non-Gaussian state-----Laguerre polynomial excited coherent states by using the multiphoton catalysis which actually can be considered as a block comprising photon number operator. It is found that the normalized factor is related to the two-variable Hermite polynomials. We then investigate the nonclassical properties in terms of Mandel's Q parameter, quadrature squeezing, second correlation, and the negativity of Wigner function (WF). Read More

This paper deals with the problem of boundary stabilization of first-order n\times n inhomogeneous quasilinear hyperbolic systems. A backstepping method is developed. The main result supplements the previous works on how to design multi-boundary feedback controllers to realize exponential stability of the original nonlinear system in the spatial H^2 sense. Read More

The discovery of a new type of solitons occuring in periodic systems without photonic bandgaps is reported. Solitons are nonlinear self-trapped wave packets. They have been extensively studied in many branches of physics. Read More

As an interesting surface plasmon phenomenon discovered several years ago, electromagnetic field redistribution in nanoparticle dimer on film system provides a novel thought to enhance the light power on a plain film which could been widely used in surface enhanced Raman scattering (SERS), solar cells, photo-catalysis, etc. Homodimers on film are mainly investigated in past years, while the properties of heterodimers on film are still unclear. In this work, size difference induced electromagnetic field redistribution in Ag nanoparticle dimer on Au film system is investigated first. Read More

We report the superconductivity of the CaSn3 single crystal with a AuCu3-type structure, namely cubic space group Pm3m. The superconducting transition temperature TC=4.2 K is determined by the magnetic susceptibility, electrical resistivity, and heat capacity measurements. Read More

The plasmonic chirality has drawn a lot of attention because of the tunable circular dichroism (CD) and the enhancement for the signal of chiral molecules. Different mechanisms have been proposed for explaining the plasmonic CD, however, a quantitative one like ab initio mechanism in chiral molecules is still unavailable. In this work, a mechanism similar to the chiral molecules is analyzed. Read More

**Affiliations:**

^{1}LJLL, IUF,

^{2}LJLL,

^{3}LJLL

**Category:**Mathematics - Optimization and Control

In the present article we study the stabilization of first-order linear integro-differential hyperbolic equations. For such equations we prove that the stabilization in finite time is equivalent to the exact controllability property. The proof relies on a Fredholm transformation that maps the original system into a finite-time stable target system. Read More

Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi$_{3}$ (A=Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi$_{3}$. Read More

Variance components estimation and mixed model analysis are central themes in statistics with applications in numerous scientific disciplines. Despite the best efforts of generations of statisticians and numerical analysts, maximum likelihood estimation and restricted maximum likelihood estimation of variance component models remain numerically challenging. Building on the minorization-maximization (MM) principle, this paper presents a novel iterative algorithm for variance components estimation. Read More

The two-body core+$2n$ cluster structure was implemented to describe the two-neutron halo nucleus $^{\mathrm{14}}\mathrm{Be}$, where the core$^{\mathrm{12}}\mathrm{Be}$ was assumed inert and at ground state and the dineutron was assumed at pure $2S_0$ state. Based on such a structure the three-body continuum-discretized coupled-channel (CDCC) calculation was successfully used to deal with the $^{\mathrm{14}}\mathrm{Be}$ breakup reactions of $^{\mathrm{14}}\mathrm{Be}+^{\mathrm{12}}\mathrm{C}$ at 68~MeV/nucleon and $^{\mathrm{14}}\mathrm{Be}+ $Pb at 35~MeV/nucleon.Consequently, we modeled the kinematically complete measurement experiment of $^{\mathrm{14}}\mathrm{Be}$ (35~MeV/nucleon) Coulomb breakup at a lead target with the help of Geant4. Read More

We introduce three tunable parameters to optimize the fidelity of quantum teleportation with continuous-variable in nonideal scheme. Using the characteristic function formalism, we present the condition that the teleportation fidelity is independent of the amplitude of input coherent states for any entangled resource. Then we investigate the effects of tunable parameters on the fidelity with or without the presence of environment and imperfect measurements, by analytically deriving the expression of fidelity for three different input coherent state distributions. Read More

In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, J. Dove, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, K. Y. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. Read More

**Authors:**F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, D. Cao, G. F. Cao, J. Cao, R. Carr, W. R. Cen, W. T. Chan, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Y. Chen, H. S. Chen, M. J. Chen, Q. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, S. Chidzik, K. Chow, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, L. Dong, J. Dove, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, M. Grassi, L. S. Greenler, W. Q. Gu, M. Y. Guan, R. P. Guo, X. H. Guo, R. W. Hackenburg, R. L. Hahn, R. Han, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, A. Higuera, P. Hinrichs, T. H. Ho, M. Hoff, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Z. Huang, H. X. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, J. Joseph, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, C. Li, D. J. Li, F. Li, G. S. Li, J. Li, N. Y. Li, Q. J. Li, S. F. Li, S. C. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Y. F. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. X. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. Liu, S. S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, J. S. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, D. Mohapatra, J. Monari Kebwaro, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, A. Pagac, H. -R. Pan, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, W. R. Sands III, B. Seilhan, B. B. Shao, K. Shih, W. Y. Song, H. Steiner, P. Stoler, M. Stuart, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, W. Tang, X. Tang, D. Taychenachev, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, W. W. Wang, X. T. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, S. C. F. Wong, E. Worcester, F. F. Wu, Q. Wu, D. M. Xia, J. K. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Y. Xu, J. L. Xu, J. Xu, W. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, G. Y. Yu, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, F. H. Zhang, H. H. Zhang, J. W. Zhang, K. Zhang, Q. X. Zhang, Q. M. Zhang, S. H. Zhang, X. T. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, Z. Y. Zhou, H. L. Zhuang, S. Zimmerman, J. H. Zou

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Read More

**Authors:**ARA Collaboration, P. Allison, R. Bard, J. J. Beatty, D. Z. Besson, C. Bora, C. -C. Chen, C. -H. Chen, P. Chen, A. Christenson, A. Connolly, J. Davies, M. Duvernois, B. Fox, R. Gaior, P. W. Gorham, K. Hanson, J. Haugen, B. Hill, K. D. Hoffman, E. Hong, S. -Y. Hsu, L. Hu, J. -J. Huang, M. -H. A. Huang, A. Ishihara, A. Karle, J. L. Kelley, D. Kennedy, I. Kravchenko, T. Kuwabara, H. Landsman, A. Laundrie, C. -J. Li, T. C. Liu, M. -Y. Lu, L. Macchiarulo, K. Mase, T. Meures, R. Meyhandan, C. Miki, R. Morse, J. Nam, R. J. Nichol, G. Nir, A. Novikov, A. O'Murchadha, C. Pfendner, K. Ratzlaff, M. Relich, M. Richman, L. Ritter, B. Rotter, P. Sandstrom, P. Schellin, A. Shultz, D. Seckel, Y. -S. Shiao, J. Stockham, M. Stockham, J. Touart, G. S. Varner, M. -Z. Wang, S. -H. Wang, Y. Yang, S. Yoshida, R. Young

Ultra-high energy neutrinos are interesting messenger particles since, if detected, they can transmit exclusive information about ultra-high energy processes in the Universe. These particles, with energies above $10^{16}\mathrm{eV}$, interact very rarely. Therefore, detectors that instrument several gigatons of matter are needed to discover them. Read More

By combining the beam splitter and the Fresnel transform, a protocol is proposed to generate a new entangled state representation, called the intermediate coherent-entangled state (ICES) representation. The properties, such as eigenvalue equation, completeness relation and orthogonal relation, are investigated. The conjugate state representation of the ICES and the Schmidt decomposing of the ICES are also discussed. Read More

A coloring of a graph $G=(V,E)$ is a partition $\{V_1, V_2, \ldots, V_k\}$ of
$V$ into independent sets or color classes. A vertex $v\in V_i$ is a Grundy
vertex if it is adjacent to at least one vertex in each color class $V_j$ for
every $j*Read More*

**Authors:**P. Allison, J. Auffenberg, R. Bard, J. J. Beatty, D. Z. Besson, C. Bora, C. -C. Chen, P. Chen, A. Connolly, J. P. Davies, M. A. DuVernois, B. Fox, P. W. Gorham, K. Hanson, B. Hill, K. D. Hoffman, E. Hong, L. -C. Hu, A. Ishihara, A. Karle, J. Kelley, I. Kravchenko, H. Landsman, A. Laundrie, C. -J. Li, T. Liu, M. -Y. Lu, R. Maunu, K. Mase, T. Meures, C. Miki, J. Nam, R. J. Nichol, G. Nir, A. O'Murchadha, C. G. Pfendner, K. Ratzlaff, B. Rotter, P. Sandstrom, D. Seckel, A. Shultz, M. Song, J. Stockham, M. Stockham, M. Sullivan, J. Touart, H. -Y. Tu, G. S. Varner, S. Yoshida, R. Young, M. Bustamante, D. Guetta

**Category:**High Energy Astrophysical Phenomena

We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Read More

A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length $\tau$. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, H. Themann, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6. Read More

Research on stabilization of coupled hyperbolic PDEs has been dominated by the focus on pairs of counter-convecting ("heterodirectional") transport PDEs with distributed local coupling and with controls at one or both boundaries. A recent extension allows stabilization using only one control for a system containing an arbitrary number of coupled transport PDEs that convect at different speeds against the direction of the PDE whose boundary is actuated. In this paper we present a solution to the fully general case, in which the number of PDEs in either direction is arbitrary, and where actuation is applied on only one boundary (to all the PDEs that convect downstream from that boundary). Read More

Hybrid pixel single-photon-counting detectors have been successfully employed and widely used in Synchrotron radiation X-ray detection. In this paper, the silicon pixel sensors for single X-ray photon detection, which operate in full-depletion mode have been studied. The pixel sensors were fabricated on 4-inch, N type, 320{\mu}m thick, high-resistivity silicon wafers. Read More

Neuroimage analysis usually involves learning thousands or even millions of variables using only a limited number of samples. In this regard, sparse models, e.g. Read More

Wireless energy harvesting (WEH) provides an exciting way to supply energy for relay nodes to forward information for the source-destination pairs. In this paper, we investigate the problem on how the relay node dynamically adjusts the power splitting ratio of information transmission (IT) and energy harvesting (EH) in order to achieve the optimal outage performance. According to the knowledge of channel state information (CSI) at the relay, optimal dynamic power splitting policy with full CSI and partial CSI are both provided. Read More